K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2021

\(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\left(pytago\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{8}{17}\approx\sin28^0\\ \Rightarrow\widehat{B}\approx28^0\\ \Rightarrow\widehat{C}=90^0-\widehat{B}\approx62^0\)

c: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=2a\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)

17 tháng 4 2023

Nối B vs I. Xét tam giác BID vuông tại D, có:

    BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:

    DC2 = IC2 - ID2 (2).Từ (1) và (2) =>

=> BD2 - DC2

   = BI2 - ID2 - IC2 + ID2

   = BI2 - IC2

   = BI2 - AI2 (vì AM=CM)

   = AB2=> AB2 = BD2 - DC2 (đpcm)

17 tháng 4 2023

Câu a

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

27 tháng 10 2021

\(sinC=\dfrac{AB}{AC}\Rightarrow AC=AB:sinC=17:sin67^0\simeq18,5\left(m\right)\)

13 tháng 11 2021

Mọi người giúp giải giúp mình đi🥺

13 tháng 11 2021

\(\widehat{B}=60^0\)

BC=16cm

\(AB=8\sqrt{3}\left(cm\right)\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

11 tháng 7 2016

A B C 17cm 40 ? ? ?

Tam giác ABC vuông tại A: 

\(tanB=\frac{AC}{AB}\Rightarrow AC=\tan B.AB=\tan40^o.17\approx14,265cm\)

\(\cos B=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\cos B}=\frac{17}{cos40^o}\approx22,192cm\)

\(\cos C=\frac{AC}{BC}=\frac{14,265}{22,192}\approx0,643\Rightarrow C\approx50^o\)