Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó:ΔBAD=ΔBED
Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BE
b: Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: góc CAE+góc BAE=90 độ
góc HAE+góc BEA=90 độ
góc BAE=góc BEA
=>góc CAE=góc HAE
=>AE là phân giác của góc HAC
=>EH/AH=EC/AC
mà AH<AC
nên EH<EC
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE⊥BE(Đpcm)
b) Ta có: ΔBAD=ΔBED(Cmt)
nên AD=ED(Hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
a, cm tam giac BAD=tam giac BED( c.g.c)\(\Rightarrow\)Góc BAD= Góc BED( góc tuong ứng)\(\Rightarrow\)BED= 90o\(\Rightarrow\)DE vuong BE
- BA=BE(gt)
- chung AD
- góc ABD= góc EBD( BD lf tia P.g)
b,xét tam giác BAE có BA=BE(Gt)
\(\Rightarrow\)tam giac BAE Cân tại B
Mà BD là dường phân giác
\(\Rightarrow\)BD đồng thời là đường trung trực của AE
Mới làm dk 2fan nay
Kẻ EK vuông góc với DC
Do AH//DC ( vì cùng vuông góc với BC)
nên góc HAE bằng góc DEA( slt)
mà góc DAE bằng góc DEA( Do tam giác ADE có DA=DE nên Tam giác ADE cân tại D)
suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC
a, Xét Δ BAD và Δ BED
Ta có : \(BA=BE\left(gt\right)\)
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABC}\))
BD là cạnh chung
=> Δ BAD = Δ BED (c.g.c)
b, Ta có : BA = BE (gt)
=> Δ ABE cân tại B
Mà BD là tia phân giác và cũng đồng thời là đường trung trực.
=> BD là đường trung trực của AE
c, ??
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>BE vuông góc DE
b: BA=BE
DA=DE
=>BD là trung trực của AE