Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADEC có
AD//EC(gt)
AD=EC(gt)
Do đó: ADEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AE và DC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AE cắt DC tại M(gt)
nên M là trung điểm chung của DC và AE(đpcm)
b) Xét tứ giác ABEF có
M là trung điểm của đường chéo AE(cmt)
M là trung điểm của đường chéo BF(gt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AB//DC(gt)
AB//FE(ABEF là hình bình hành)
Do đó: FE//DC(Định lí 3 từ vuông góc tới song song)
Xét ΔDMF và ΔCMB có
MF=MB(gt)
\(\widehat{DMF}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MC(M là trung điểm của DC)
Do đó: ΔDMF=ΔCMB(c-g-c)
Suy ra: DF=BC(hai cạnh tương ứng)
mà AD=EC(ADEC là hình bình hành)
và AD=BC(ABCD là hình thang cân)
nên DF=EC
Hình thang DCEF(DC//FE) có DF=EC(cmt)
nên DCEF là hình thang cân
ta có:AE vuông góc với AC ;AB vuông góc với AF
suy ra: góc AEC=90độ;góc BAF=90đ
mà góc BAC+góc EAB= góc AEC=90đ
góc BAC+góc CAF=góc BAF=90đ
suy ra: góc EAB=góc CAF
xét tam giác AEBvà ACF có:
AE=AC
AB=AF
góc EAB= góc ACF (cmt)
suy ra tam giác AEB=ACF ( C.G.C)
suy ra EB= CF ( cạnh tương ứng)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Dễ chứng minh ΔABC~ΔADE (g.g)
⇒ \(\frac{AB}{AD}=\frac{BC}{DE}=\frac{AC}{AE}\) ⇒ \(BC=\frac{AC.DE}{AE};AB=\frac{AC.AD}{AE}\)
Cần chứng minh \(BC.DE=AB.AD+AC.AE\)
⇔ \(\frac{DE^2.AC}{AE}=\frac{AD^2.AC}{AE}+AC.AE\)
⇔ \(DE^2=AD^2+AE^2\)
Suy ra tam giác ADE vuông tại A, hay tam giác ABC vuông tại A
Bạn xem lại đề :D Mình đến đây ko giải được nữa
Nếu △ ABC vuông tại A thì dễ quá. Bài này lúc đầu teacher mk đọc đề sai, phải là "... trên nửa mặt phẳng bờ DC có chứa điểm B..."