K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2021

\(\left(a-b+c\right)+\left(a+b+c\right)=2\left(a+c\right)\) chẵn

\(\Rightarrow a-b+c\) và \(a+b+c\) cùng tính chẵn lẻ

Mà \(a-b+c=123\) lẻ \(\Rightarrow a+b+c\) lẻ

 

Ta có:

\(a-b+c=123\Rightarrow\left(a-b+c\right)\left(a+b+c\right)=123\left(a+b+c\right)\)

\(\Rightarrow\left(a+c\right)^2-b^2=123\left(a+b+c\right)\)

\(\Rightarrow a^2+c^2-b^2=123\left(a+b+c\right)-2ac\)

\(123\left(a+b+c\right)\) lẻ và \(-2ac\) chẵn

\(\Rightarrow123\left(a+b+c\right)-2ac\) lẻ

\(\Rightarrow a^2-b^2+c^2\) lẻ

Hay \(a^2-b^2+c^2\) chia 2 dư 1

23 tháng 2 2016

c)đề sửa lại :x^2+xy-2013x-2014y-2015=0

  • x khác 2013
  • y=\(\frac{-x^2+2012x+2014}{x-2013}\)

=>y=(-x^2+2013x-x+2013+1)/(x-2013)=-x-1+1/(x-2013)

để pt có nghiệm nguyên =>   1)x-2013=1=>x=2014

2)x-2013=-1=>x=2012

tu tim y

23 tháng 2 2016

bn giai minh chua hieu lvm