Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\c-a=z\end{matrix}\right.\) \(\Rightarrow x+y+z=0\)
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.0}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}}\)
\(=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\in Q\)
Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html
Cần chứng minh BĐT khác
\(\frac{a^3-b^3}{\left(a-b\right)^3}+\frac{b^3-c^3}{\left(b-c\right)^3}+\frac{c^3-a^3}{\left(c-a\right)^3}\ge\frac{9}{4}\)
\(\LeftrightarrowΣ\frac{3\left(a+b\right)^2+\left(a-b\right)^2}{\left(a-b\right)^2}\ge4\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\)
Vậy chứng minh BĐT đầu bài quay ra chứng minh BĐT dòng đầu
\(\Leftrightarrow\frac{\left(a+b\right)^2}{\left(a-b\right)^2}-1+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}-1+\frac{\left(c+a\right)^2}{\left(c-a\right)^2}-1\ge-1\)
\(\Leftrightarrow\frac{4ab}{\left(a-b\right)^2}+\frac{4bc}{\left(b-c\right)^2}+\frac{4ca}{\left(a-c\right)^2}\ge-1\)
\(\Leftrightarrow\frac{3ab}{\left(a-b\right)^2}+\frac{3bc}{\left(b-c\right)^2}+\frac{3ca}{\left(a-c\right)^2}\ge-\frac{3}{4}\)
\(\Leftrightarrow\frac{3ab}{\left(a-b\right)^2}+1+\frac{3bc}{\left(b-c\right)^2}+1+\frac{3ca}{\left(a-c\right)^2}+1\ge3-\frac{3}{4}\)
\(\Leftrightarrow\frac{a^2+ab+b^2}{\left(a-b\right)^2}+\frac{b^2+bc+c^2}{\left(b-c\right)^2}+\frac{c^2+ac+c^2}{\left(a-c\right)^2}\ge\frac{9}{4}\)
\(\Leftrightarrow\frac{a^3-b^3}{\left(a-b\right)^3}+\frac{b^3-c^3}{\left(b-c\right)^3}+\frac{c^3-a^3}{\left(a-c\right)^3}\ge\frac{9}{4}\)
BĐT cuối đúng nên ta có ĐPCM
ko pic
mik pic nhưng giải rất dài dòng
ai k mik
mik kb hít lun nha
1)Từ gt đề bài,ta có : (x2 - yz).y.(1 - xz) = (y2 - xz).x.(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z + xy2z2) - (xy2 - xy3z - x2z + x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)[xy + xz + yz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\)nên xy + xz + yz - xyz(x + y + z) = 0 => xy + xz + yz = xyz(x + y + z)
Vì\(xyz\ne0\)nên chia 2 vế cho xyz,ta có :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= x + y + z (đpcm)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
Từ: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\)
\(\Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{ac}+2\sqrt{bc}=4\)
\(\Leftrightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=1.\)vì a + b + c = 2
Từ đó: \(a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right).\)
Tương tự: \(b+1=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\), \(c+1=\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right).\)
Từ đó: \(\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}=\frac{2}{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}.\)
Tương tự ta có: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}\)
\(=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\frac{\sqrt{c}}{\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\).
Ta có: VP = VT nên có đpcm.
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Đề viết mệt quá nên thay \(\sqrt{a}=a;\sqrt{b}=b;\sqrt{c}=c\) viết lại đề tiện thể sửa đề luôn.
\(a^2+b^2=\left(a+b-c\right)^2\)
Chứng minh:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Ta có: \(a^2+b^2=\left(a+b-c\right)^2\)
\(\Leftrightarrow c^2-2ac-2bc+2ab=0\)
\(\Leftrightarrow a=\frac{c^2-2bc}{2c-2b}\)
Thế vô bài toán ta được
\(VT=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(c^2\right)^2}{b^2+\left(b-c\right)^2}=\frac{2c^2\left(2b^2+c^2-2bc\right)}{\left(2b^2+c^2-2bc\right)4\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
Ta lại có:
\(VP=\frac{\frac{c^2-2bc}{2c-2b}-c}{b-c}=\frac{-c^2}{-2\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
\(\Rightarrow\)ĐOCM
Ta có:
\(\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2\)
\(=\left(a^2+b^2+c^2-ab-bc-ca\right)^2\)
\(\Rightarrow A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(c-a\right)^2\left(a-b\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Vì \(a,b,c\in Q\)
\(\Rightarrow A\in Q\)
Đặt \(a-b=x,b-c=y,c-a=z\). \(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=A\)
Khi đó A bằng giá trị tuyệt đối của \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ