Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)
\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)
\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)
\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Mà \(a,b,c>0\)
\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)
\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Lại có:
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>
bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$