Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a+b-b-c}{2018-2019}=\frac{a-c}{-1}\)
\(\frac{b+c-c-a}{2019-2020}=\frac{b-a}{-1}\)
\(\frac{b-c}{2018-2020}=\frac{b-c}{-2}\)
Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{b-c}{-2}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{a-c}{-1}=k\\\frac{b-a}{-1}=k\\\frac{b-c}{-2}=k\end{cases}\Rightarrow\hept{\begin{cases}a-c=-k\\b-a=-k\\b-c=k.\left(-2\right)\end{cases}}}\)
\(\Rightarrowđpcm\)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)
\(\Rightarrow a=2018k\), \(b=2019k\), \(c=2020k\)
Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2018k-2019k\right)\left(2019k-2020k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2=\left(2k\right)^2\)
Ta lại có: \(\left(a-c\right)^2=\left(2018k-2020k\right)^2=\left(-2k\right)^2=\left(2k\right)^2\)
Vậy \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)
Thế vị trí tương ứng ta được :
VT = 4( a - b )( b - c )
= 4( 2018k - 2019k )( 2019k - 2020k )
= 4(-k)(-k)
= 4k2
VP = ( a - c )2
= ( 2018k - 2020k )2
= ( -2k )2
= 4k2
=> VT = VP
=> đpcm
Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)
\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)
Khi đó :
\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)
\(\Rightarrow\left(a-c\right)^3=\left(2018k-2020k\right)^3=\left(-2k\right)^3=-8k^3\) (1)
\(8\left(a-b\right)^2.\left(b-c\right)=8\left(2018k-2019k\right)^2.\left(2019k-2020k\right)=8k^2\left(-k\right)=8\left(-k\right)^3=-8k^3\left(2\right)\)
Từ (1) và (2) ⇒ \(\left(a-c\right)^3=8\left(a-b\right)^2.\left(b-c\right)\left(đpcm\right)\)
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >
Đề sai rồi thì phải ak
\(\left(a+c-2b\right)^{2020}+\left|2bd-cd-cb\right|^{2019}=0\) nhé !
\(\Leftrightarrow a+c-2b=0;2bd-cd-cb=0\)
\(\Leftrightarrow a+c=2b;2bd-cd-cb=0\)
\(\Leftrightarrow\left(a+c\right)d-cd-cb=0\)
\(\Leftrightarrow ad=cb\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\) ( đpcm )
Áp dụng t/c dãy tỷ số bằng nhau có
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\)
\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)
Tương tự có \(a+c=2b;b+c=2a\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a.b.c}=\frac{2c.2a.2b}{a.b.c}=8\)
Đề sai sai gì đó nhá xem lại dùm