Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: CH\(\perp\)AB(gt)
BK\(\perp\)AB(ΔABK vuông tại B)
Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)
Ta có: BH\(\perp\)AC(gt)
CK\(\perp\)AC(ΔACK vuông tại C)
Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)
Xét tứ giác BHCK có
CH//BK(cmt)
BH//CK(cmt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a) Xét (O) có
ΔABK nội tiếp đường tròn(A,B,K∈(O))
AK là đường kính(gt)
Do đó: ΔABK vuông tại B(Định lí)
Xét (O) có
ΔACK nội tiếp đường tròn(A,C,K∈(O))
AK là đường kính(gt)
Do đó: ΔACK vuông tại C(Định lí)
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
a) Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp
Gọi I là trung điểm BC
Vì \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)
Vì \(\Delta BDC\) vuông tại D có I là trung điểm BC \(\Rightarrow ID=IB=IC\)
\(\Rightarrow ID=IE=IB=IC\Rightarrow I\) là tâm của (BCDE)
b) Vì AK là đường kính \(\Rightarrow\angle ABK=\angle ACK=90\)
\(\Rightarrow\left\{{}\begin{matrix}BK\bot AB\\CK\bot AC\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}CH\bot AB\\BH\bot AC\end{matrix}\right.\Rightarrow\) \(CH\parallel BK,BH\parallel CK\)
\(\Rightarrow BHCK\) là hình bình hành có I là trung điểm BC
\(\Rightarrow H,I,K\) thẳng hàng
a: Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔBCK nội tiếp
BK là đường kính
Do đó: ΔBCK vuông tại C
=>CK//AH
Xét (O) có
ΔBAK nội tiếp
BK là đường kính
Do đó: ΔBAK vuông tại A
=>AK//CH
Xét tứ giác CHAK có
CH//AK
CK//AH
DO đó: CHAK là hình bình hành
CM dễ vãi, AB, AC cắt nhau. Đường kính cất đường tròn tại giao D vs E