Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.
\(P\left(0\right)=c\) nguyên.
\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)
\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)
-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.
\(\Rightarrow\)đpcm.
*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.
-Từ đây suy ra cả 3 số a,b,c đều nguyên.
\(\Rightarrow\)đpcm.
Từ giả thiết ta có c = f(0) \(\in\)Z ,còn a, b không nhất thiết phải nguyên ,chẳng hạn với a = b = \(\frac{1}{2},c\inℤ\)
\(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c=\frac{x\left(x+1\right)}{2}+c\inℤ\)
với mọi \(x\inℤ\)
\(a+b+c=0\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Vì \(-3ab\left(a+b\right)\) luôn chia hết cho 3 và a,b,c nguyên nên không thể là số nguyên tố