K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2022

*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.

\(P\left(0\right)=c\) nguyên.

\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)

\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)

-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.

\(\Rightarrow\)đpcm.

*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.

-Từ đây suy ra cả 3 số a,b,c đều nguyên.

\(\Rightarrow\)đpcm.

 

7 tháng 4 2020

Từ giả thiết ta có c = f(0) \(\in\)Z ,còn a, b không nhất thiết phải nguyên ,chẳng hạn với a = b = \(\frac{1}{2},c\inℤ\)

\(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c=\frac{x\left(x+1\right)}{2}+c\inℤ\)

với mọi \(x\inℤ\)

7 tháng 10 2016

\(a+b+c=0\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Vì \(-3ab\left(a+b\right)\) luôn chia hết cho 3 và a,b,c nguyên nên không thể là số nguyên tố