K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

LÀM BẠN NHA

15 tháng 6 2018

Sửa đề: cm A<0

\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)

\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0

a+c>b => a+c-b > 0

c+b>a=>a-(c+b)=a-c-b < 0

a+b>c => a+b-c > 0

Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)

25 tháng 11 2017

Có a,b,c là độ dài 3 cạnh 1 tam giác.

20 tháng 2 2018

do a,b,c là 3 cạnh của tam giác nên:

c<a+b  => 2c<a+b+c  => 2c<2  => c<1

Tương tự ta cm được a<1; b<1

vì a<1 => 1-a >0

b<1 => 1-b >0

c<1  => 1-c>0

=>   (1-a)(1-b)(1-c)  > 0

=> 1- (a+b+c) +ab+bc+ac-abc >0

=>ab+ac+bc-1>abc  (a+b+c=0, chuyển vế đổi dấu)

=>2ab+2ac+2bc-2>2abc

Vậy a2+b2+c2+2abc < a2+b2+c2+2ab+2ac+2bc-2= (a+b+c)2-2=4-2=2

Vậy => dpcm

NV
7 tháng 5 2021

Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)

BĐT đã cho tương đương:

\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)

\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)

Vậy BĐT đã cho đúng