K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)\(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)

             \(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

 \(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)

Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)

15 tháng 8 2016

đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến

28 tháng 5 2019

Áp dụng BĐT Cô si cho 3 số dương ta được

\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}\)

=> \(a^3+2\ge3a\)

Áp dụng tương tự có

\(ab+1\ge2\sqrt{ab.1}\)

=>\(ab+1\ge2\sqrt{ab}\)

=>\(\frac{a^3+2}{ab+1}\ge\frac{3a}{2\sqrt{ab}}\)

=> \(\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a}{b}}\)

Chứng minh tương tự thì Q\(\ge\frac{3}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)\)

Áp dụng cô si lần nữa thì \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\ge\sqrt{\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}}=1\)

=>Q\(\ge\frac{3}{2}\)

Min Q=3/2. 

28 tháng 5 2019

#)Mất công lắm tui ms tìm đc cách bải này đấy, xin đừng cho ăn gạch đá :v

Ta có (a^3+2)/(ab+1) = 1/2.(2a^3+4)/(ab+1)
Mà 2a^3+4= (a^3+a^3+1) +3
Mặt khác theo BĐT CBS ta có a^3+a^3+1≥ 3a^2
=>2a^3 +4≥ 3(a^2+1)
Tương tự với (b^3 + 2)/(bc + 1) và (c^3 + 2)/(ca + 1)
=>Q ≥ 3/2[(a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1)]
Theo BĐT CBS=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3.căn bặc ba của [(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]
Mà theo bất đẳng thức bunhicốpxki
=>(a^2+1)(b^2+1)≥(ab+1)^2
(b^2+1)(c^2+1)≥(bc+1)^2
(c^2+1)(a^2+1)≥(ac+1)^2
=>[(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]≥1
=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3
=> Q ≥9/2
Dấu bằng xảy ra <=> a=b=c=1

       P/s : trả công ( đùa tí :P )

           #~Will~be~Pens~#

1 tháng 9 2016

Ta có \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\)\(\ge\)\(\sqrt{2^2+\left(a^2+b^2\right)^2}\)(1)

Ta lại có \(\frac{a^2+b^2}{2}\ge ab\)

\(\frac{a^2+1}{2}\ge a\)

\(\frac{b^2+1}{2}\ge b\)

Từ đó => a+ b\(\ge\)a + b + ab - 1 = \(\frac{1}{4}\)

Thế vào 1 ta được P \(\ge\)\(\frac{\sqrt{65}}{4}\)

\(\frac{9}{4}=\left(a+1\right)\left(b+1\right)\le\frac{\left(a+1\right)^2+\left(b+1\right)^2}{2}=\frac{2\left(a^2+1\right)+2\left(b^2+1\right)}{2}=a^2+b^2+2.\)

\(\Rightarrow a^2+b^2\ge\frac{1}{4}\)

\(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(\frac{1}{4}\right)^2}=\frac{\sqrt{17}}{2}\)

11 tháng 8 2020

Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)

12 tháng 8 2020

Cauchy ngược dấu + Svacxo + gt coi 

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

17 tháng 8 2016

chờ bông băng đi cấp cứu đã

 

17 tháng 8 2016

bà kiếm mấy bài cực trị này ở đâu z? chỉ t vs ,cho t đề cx đc

30 tháng 7 2019

Nhân 2 vế của 2 ĐT đề bài ta có

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\frac{47}{10}\)

<=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{a+c}+\frac{a}{a+c}\right)=\frac{47}{10}\)

=>\(P=\frac{17}{10}\)

Vậy \(P=\frac{17}{10}\)