Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) \(MinA\) :
Ta thấy: a,b,c đều là các số thực không âm.
Do đó : \(A\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=0,c=1\) và các hoán vị.
\(*)MaxA\) :
Giả sử \(a\ge b\ge c\) \(\Rightarrow3a\ge a+b+c=1\)
\(\Rightarrow1-3a\le0\)
Ta có : \(A=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\)
\(=a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3abc-3abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
\(=ab+bc+ca-3abc\)
\(=a\left(b+c\right)+bc\left(1-3a\right)\) \(\le\frac{\left(a+b+c\right)^2}{4}+0\) ( do \(1-3a\le0\) ) \(=\frac{1}{4}\)
hay \(A\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2},c=0\) và các hoán vị.
\(\)
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
Ta có \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow3\ge3\sqrt[3]{abc}\Leftrightarrow\sqrt[3]{abc}\le1\Leftrightarrow abc\le1\)(bđt AM-GM)
Khi đó \(P=2\left(ab+bc+ca\right)-abc\ge2\left(ab+bc+ca\right)-1\)
\(=2\left(\frac{abc}{c}+\frac{abc}{a}+\frac{abc}{b}\right)-1=2\left[abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]-1\)
\(=2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1=2.\frac{\left(1+1+1\right)^2}{a+b+c}-1=\frac{2.9}{3}-1=5\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
Vậy GTNN của \(P=5\)đạt được khi \(a=b=c=1\)
p/s : nói chung hướng làm là vậy thôi :v chứ minh làm sai chỗ nào rồi ý
Theo BĐT Cauchy Schwarz
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=9\)
Dấu ''='' xảy ra khi a = b = c = 1/3