Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: \(\left(a^2+2b^2+c^2\right)\left(2^2+1^2+2^2\right)\ge\left(2a+2b+2c\right)^2\)
\(\Rightarrow a^2+2b^2+c^2\ge\frac{4\left(a+b+c\right)^2}{9}\Rightarrow\sqrt{a^2+2b^2+c^2}\ge\frac{2}{3}\left(a+b+c\right)\)
Tương tự: \(\sqrt{b^2+2c^2+a^2}\ge\frac{2}{3}\left(a+b+c\right)\); \(\sqrt{c^2+2a^2+b^2}\ge\frac{2}{3}\left(a+b+c\right)\)
Thay vào ta có: \(VT\le\frac{3\left(3a+b+3b+c+3c+a\right)}{2\left(a+b+c\right)}=6\)(qed)
Đẳng thức xảy ra khi a = b = c
Is that true?
Áp dụng bđt Bunhiacopxki ta được:
\(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\)
Mặt khác cũng theo bđt Bunhiacopxki dạng phân thức, ta được:
\(\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\le\frac{9a^2}{a^2+b^2+c^2}+\frac{b^2}{b^2}=\frac{9a^2}{a^2+b^2+c^2}+1\)
Hoàn toàn tương tự, ta có:
\(\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\frac{9b^2}{b^2+c^2+a^2}+1\);\(\frac{\left(3c+a\right)^2}{c^2+2a^2+b^2}\le\frac{9c^2}{c^2+a^2+b^2}+1\)
Cộng từng vế của các bđt trên, ta được:
\(\text{}\text{}\text{Σ}_{cyc}\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\text{Σ}_{cyc}\frac{9b^2}{b^2+c^2+a^2}+3=9+3=12\)
Do đó \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\le3.12=36\)
Hay \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)\le6\)
Đẳng thức xảy ra khi a = b = c
\(\Leftrightarrow\frac{\sqrt{bc}}{\sqrt{5a\left(3a+2b\right)}}+\frac{\sqrt{ac}}{\sqrt{5b\left(3b+2c\right)}}+\frac{\sqrt{ab}}{\sqrt{5c\left(3c+2a\right)}}\ge\frac{3}{5}\)
\(\Leftrightarrow\frac{bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{ac}{\sqrt{5bc\left(3ab+2ac\right)}}+\frac{ab}{\sqrt{5ac\left(3bc+2ab\right)}}\ge\frac{3}{5}\)
Thật vậy, theo AM-GM ta có:
\(VT\ge\frac{2bc}{5ab+2bc+3ac}+\frac{2ac}{3ab+5bc+2ac}+\frac{2ab}{2ab+3bc+5ac}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\)
\(\Rightarrow VT\ge\frac{2x}{2x+3y+5z}+\frac{2y}{5x+2y+3z}+\frac{2z}{3x+5y+2z}=\frac{2x^2}{2x^2+3xy+5zx}+\frac{2y^2}{5xy+2y^2+3yz}+\frac{2z^2}{3zx+5yz+2z^2}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+2\left(xy+yz+zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+2\left(xy+yz+zx\right)}\)
\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{2}{3}\left(x+y+z\right)^2}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)
Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)
Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)
\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)
Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)
\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)
\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)
Như vậy (*) đúng
Đẳng thức xảy ra khi a = b = c
bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi hoặc bdt holder ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\) câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .
Bài 1:Đặt VT=A
Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)
Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:
\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
Tương tự với 2 cái còn lại
\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)
\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)
Đẳng thức xảy ra khi a=b=c
Bài 2:
Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Dự đoán điểm rơi xảy ra khi a=b=c=1
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
Tương tự suy ra
\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)
Ta có:
\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)
\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)
\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)
Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)
\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)
\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)
\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)
Giờ ta cần chứng minh
\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy ta có ĐPCM
alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!
2a²/(a-b) + b²/(b-c) = (2a²-2b²)/(a-b) + (b²-c²)/(b-c) + 2b²/(a-b) + c²/(b-c)
= 2(a+b) + (b+c) + 2b²/(a-b) + c²/(b-c)
>2a +3b +c (vì a,b,c > 0)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{3a+b+c}=\frac{a}{\frac{a+b+c}{3}+\frac{a+b+c}{3}+\frac{a+b+c}{3}+a+a}\leq \frac{a}{25}\left(\frac{1}{\frac{a+b+c}{3}}+\frac{1}{\frac{a+b+c}{3}}+\frac{1}{\frac{a+b+c}{3}}+\frac{1}{a}+\frac{1}{a}\right)\)
hay \(\frac{a}{3a+b+c}\leq \frac{9a}{25(a+b+c)}+\frac{2}{25}\)
Hoàn toàn TT: \(\frac{b}{a+3b+c}\leq \frac{9b}{25(a+b+c)}+\frac{2}{25}; \frac{c}{a+b+3c}\leq \frac{9c}{25(a+b+c)}+\frac{2}{25}\)
Cộng theo vế các BĐT trên
\(\Rightarrow T\leq \frac{9(a+b+c)}{25(a+b+c)}+\frac{6}{25}=\frac{3}{5}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Akai Haruma: em có một cách khác là chuẩn hóa, nhưng ko biết đúng không. Vì cô làm cách kia rồi nên em làm cách này, chứ em thích cách kia hơn.
BĐT trên là thuần nhất (đồng bậc) nên chuẩn hóa a + b + c = 3. Ta cần chứng minh:
\(\Sigma\frac{a}{2a+3}\le\frac{3}{5}\)
C1: Áp dụng BđT AM-GM \(\frac{a}{2a+3}=\frac{a}{a+a+1+1+1}\le\left(\frac{1}{25}+\frac{1}{25}+\frac{3a}{25}\right)\)
Tương tự hai BĐT còn lại và cộng theo vế ta thu được đpcm.
Cách 2: (ko hay + dài)
\(BĐT\Leftrightarrow\Sigma\left(\frac{a}{2a+3}-\frac{1}{5}\right)\le0\) \(\Leftrightarrow\Sigma\left(\frac{3\left(a-1\right)}{5\left(2a+3\right)}-\frac{3}{25}\left(a-1\right)\right)+\Sigma\frac{3}{25}\left(a-1\right)\ge0\)
\(\Leftrightarrow\Sigma\left(a-1\right)\left(\frac{3}{5\left(2a+3\right)}-\frac{3}{25}\right)\le0\)\(\Leftrightarrow\Sigma\frac{-30\left(a-1\right)^2}{5.25\left(2a+3\right)}\le0\) (đúng)
Ta có đpcm
\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)
\(=\frac{a+c+2c}{a+b}+\frac{a+b+2b}{a+c}+\frac{2a}{b+c}\)
\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)
\(=\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{a+c}{a+b}\cdot\frac{a+b}{a+c}}=2\)
Cần chứng minh \(2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge3\)thì bài toán được chứng minh
tức là \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc nên ta có điều phải chứng minh
Đẳng thức xảy ra <=> a=b=c