Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
a: Ta có: \(2x^3-5x^2+8x-3=0\)
\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)
=>2x-1=0
hay x=1/2
bình phương 2 vế của 1/a + 1/b +1/c =2 ta đk:
1/a^2 +1/b^2 + 1/c^2 + 2 x (a+b+c) / abc =4
1/a^2 + 1/b^2 + 1/c^2 +2 =4
=> 1/a^2 + 1/b^2 + 1/c^2 =2
mk nghĩ đây là đề đúng
\(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{2}\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\\\dfrac{b}{1+c^2}=b-\dfrac{bc^2}{1+c^2}\\\dfrac{c}{1+a^2}=c-\dfrac{ca^2}{1+a^2}\end{matrix}\right.\)
Áp dụng bđt AM-GM ta có:
\(\dfrac{ab^2}{1+b^2}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
\(\Rightarrow a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab}{2}\) (1)
C/m tg tự ta có:
\(\left\{{}\begin{matrix}b-\dfrac{bc^2}{1+c^2}\ge b-\dfrac{bc}{2}\\c-\dfrac{ca^2}{1+a^2}\ge c-\dfrac{ac}{2}\end{matrix}\right.\) (2)
Chứng minh điều sau:\(ab+bc+ca\le3\)
Ta có:
\((a+b+c)^2\ge3(ab+bc+ca)\)
\(\Leftrightarrow9\ge3ab+3bc+3ca\)
\(\Leftrightarrow ab+bc+ca\le3\)
Từ (1) và (2)
\(\Rightarrow VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\)
Mà \(ab+bc+ca\le3\)
Nên \(VT\ge a+b+c-\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
=> ĐPCM
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=>Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=>Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(=>Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(=>Q=259.15-3=3882\)
Vậy Q=3882
\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)
\(=259.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)+\left[\frac{-\left(b+c\right)}{b+c}+\frac{-\left(a+c\right)}{a+c}+\frac{-\left(a+b\right)}{a+b}\right]\)
tới đây tự làm tiếp
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
Đặt x=a+b+c(x>3)
Ta có \(\left(x-6\right)^2\ge0\)(dấu '=' xảy ra khi x=6 hay a+b+c=6)\(\Leftrightarrow x^2-12x+36\ge0\Leftrightarrow x^2\ge12x-36\Leftrightarrow x^2\ge12\left(x-3\right)\Leftrightarrow\frac{x^2}{x-3}\ge12\)(1)
Áp dụng bđt \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)(dấu '=' xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\))
Ta có \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{x^2}{x-3}\)(2)
Từ (1) và (2)\(\Rightarrow\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)(đpcm)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\frac{a}{b-1}=\frac{b}{c-1}=\frac{c}{a-1}\\a+b+c=6\end{matrix}\right.\)\(\Leftrightarrow a=b=c=2\)