Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)
Gọi d là ƯCLN(a;b;c) =>d lẻ vì các số a,b,c là các số lẻ (1)
(+) a chia hết cho d
(+) b chia hết cho d
=>a+b chia hết cho d (2)
Mặt khác vì a,b là các số lẻ nên a+b sẽ chia hết cho2 (3)
Từ (1);(2) và (3) =>\(\frac{a+b}{2}\) phải chia hết cho d
C/m tương tự ta có \(\frac{b+c}{2};\frac{c+a}{2}\) cũng chia hết cho d
=>đpcm