K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bđt AM-GM:

\(\dfrac{a^3b}{c}+\dfrac{b^3c}{a}+\dfrac{c^3a}{b}+\dfrac{a^3c}{b}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}\ge6\sqrt[6]{\dfrac{a^8b^8c^8}{a^2b^2c^2}}=6\sqrt[6]{a^6b^6c^6}=6abc\)Dấu "=" xảy ra khi \(a=b=c\)

20 tháng 2 2022

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)

cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)

dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)

20 tháng 2 2022

mấy cái bất đẳng thức ở đầu là như nào v ạ

NV
22 tháng 4 2023

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)

Tương tự:

\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{c+a}+\dfrac{b}{2}\right)\)

\(\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{bc+ab}{c+a}+\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{6}\)

Dấu "=" xảy ra khi \(a=b=c\)

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

17 tháng 1 2022

weo

NV
17 tháng 1 2022

a.

\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)

2.

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)

Quay lại câu a

22 tháng 3 2021

Sử dụng Cô si cho 2 số dương ta được

                        \dfrac{a^3b}{c}+\dfrac{a^3c}{b}=a^3\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a^3ca3b​+ba3c​=a3(cb​+bc​)≥2a3

Làm tương tự với hai cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có

          \dfrac{a^3b}{c}+\dfrac{a^3c}{b}+\dfrac{b^3c}{a}+\dfrac{b^3a}{c}+\dfrac{c^3b}{a}+\dfrac{c^3a}{b}\ge2\left(a^3+b^3+c^3\right)ca3b​+ba3c​+ab3c​+cb3a​+ac3b​+bc3a​≥2(a3+b3+c3)  (1)

Lại theo bất đẳng thức Cô si ta được     

                                        a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abca3+b3+c3≥33a3b3c3​=3abc      (2)

Từ (1) và (2) suy ra đpcm.  

Theo bất đẳng thức cô si ta có 

\(\dfrac{a^3b}{c}\) + \(\dfrac{a^3c}{b}\) = a^3(b/c+c/b) ≥ 2a^3

Tương tự với 1 cặp số hạng còn lại và cộng các bất đẳng thức nhận được ta có 

a^3b/c+ a^3c/b + b^3c/a+b^3a/c + c^3b/a+ c^3a/b ≥ 2(a^3+b^3+c^3) (1)

Theo bất đẳng thức cô si ta được 

a^3 + b^3 +c^3 ≥ 3\(\sqrt{a^3b^3c^3}=3abc (2) \)

Từ (1) và (2) suy ra đpcm