K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

abc = 100a + 10b + c = (98a + 7b) + (2a + 3b + c) = 7(14a + b) + (2a + 3b + c) không chia hết cho 7 vì 2a + 3b + c không chia hết cho 7

5 tháng 8 2016

abc = 100a + 10b +c = (98a+7b)+(2a + 3b +c) = 7(14a+b) + (2a+3b+c)

=> abc - (2a+3b+c) chia hết cho 7

Nên Nếu abc không chia hết cho 7 thì (2a+3b+c) cũng không chia hết cho 7

30 tháng 7 2015

Ta có: 

abc=100a+10b+c=98a+2a+7b+9b+c

Vì abc chia hết cho 7. Suy ra 98a+2a+7b+3b+c chia hết cho 7.

Mà 98a+7b chia hết cho7. Suy ra 2a+3b+c chia hết cho 7.

Vậy 2a+3b+c chia hết cho 7.

9 tháng 11 2017

Mình chỉ giải được câu 1 thôi nhé!

Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:

abc+ ( 2a+3b+c)=  a.100+b.10+c+2a+3b+c

                            =   a.98+7.b 

Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7

=> abc+ ( 2a+3b+c) chia hết cho 7 

Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)

  
31 tháng 1 2016

1,Ta có:4(2a+3b)+(9a+5b)

=8a+12b+9a+5b

=17a+17b chia hết cho 17

Vì (2a+3b) chia hết cho 17

=>4(2a+3b) chia hết cho 17

=>9a+5b chia hết cho 17

=>đpcm

18 tháng 1 2019

ta có: P(x) chia hết cho 7 với mọi x

=> Xét TH: P(0) = a.02 +b.0 + c = 0 + c => c chia hết cho 7

P(1) = a.12 + b.1 + c = a + b + c => a + b + c chia hết cho 7

                                                      mà c chia hết cho 7 (cmt)

=> a + b chia hết cho 7 (*)

P(-1) = a.(-1)2 + b.(-1) + c = a - b + c  chia hết cho 7 => a - b chia hết cho 7 ( do c chia hết cho 7)

=> a + b + a - b chia hết cho 7

=> 2a chia hết cho 7

=> a chia hết cho 7 ( do 2 không chia hết cho 7)

mà a+ b chia hết cho 7

=> b chia hết cho 7