Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách biểu thức như sau:
\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)
Đầu tiên em phải dự đoán được điểm rơi (các cặp a;b;c đẹp sao cho \(ab=12\) và \(bc=8\), có các bộ là \(\left(6;2;4\right);\left(3;4;2\right)\)
Sau đó thay 2 bộ kia vào P xem cái nào bằng \(\dfrac{121}{12}\) thì nó đúng (ở đây là 3;4;2)
Khi có điểm rơi, bây giờ chỉ cần tính toán và ghép theo AM-GM để khử tử- mẫu
Cần ghép \(\dfrac{8}{abc}+\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\) (AM-GM 4 số sẽ khử hết biến)
\(\dfrac{8}{abc}=\dfrac{8}{3.4.2}=\dfrac{1}{3}\)
Do đó \(\dfrac{3}{x}=\dfrac{4}{y}=\dfrac{2}{z}=\dfrac{1}{3}\Rightarrow x=9;y=12;z=6\)
Hay ta có bộ đầu tiên: \(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\)
Tương tự cho các biến dưới mẫu còn lại, phần dư cuối cùng sẽ ghép cặp a với b (tận dụng \(ab\ge12\)) và b với c, nó sẽ tự đủ
Áp dụng bất đẳng thức Cô si cho hai số dương ta có:
(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca
=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c
=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)
Cộng các vế của (1) và (2) ta có:
3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)
=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.
Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI)
<=>a^3/b + b^3/c + c^3/a +ab + bc + ac ≥ 2(a2 + b2 + c2)
Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).
Áp dụng bất đẳng thức cô-si cho hai số dương ta có:
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)
\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)
Cộng (1) với (2)
\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)
Vì \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).
\(ab+bc+ac=3\)
Ta có:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) ( đúng với mọi \(ab\ge1\))
Giả sử:\(ab\ge1\)
\(\Rightarrow\dfrac{2}{ab+1}+\dfrac{1}{c^2+1}\ge\dfrac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
Giả sử: \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\)(đúng)
\(\Leftrightarrow2\left(2c^2+ab+3\right)\ge3\left(ab+1\right)\left(c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3\left(abc^2+ab+c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3abc^2+3ab+3c^2+3\)
\(\Leftrightarrow c^2-ab-3abc^2+3\ge0\)
\(\Leftrightarrow c^2-ab-3abc^2+ab+ac+bc\ge0\) ( vì \(ab+ac+bc=3\) )
\(\Leftrightarrow c^2+ac+bc-3abc^2\ge0\)
\(\Leftrightarrow c+a+b-3abc\ge0\)
\(\Leftrightarrow c+a+b\ge3abc\)
Ta có:
\(3\left(c+a+b\right)=\left(ab+ac+bc\right)\left(c+a+b\right)\) ( vì \(ab+ac+bc=3\) )
Áp dụng BĐT AM-GM, ta có:
\(\left(ab+ac+bc\right)\left(c+a+b\right)\ge9abc\)
\(\Rightarrow a+b+c\ge3abc\)
\(\Rightarrow\) \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\) ( luôn đúng )
\(\Rightarrow\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\) ( đfcm )
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)
Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)
\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)
Cộng vế:
\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)