K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)

\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)

       \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)

Tương tự, ta có: 

\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)

Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\)

Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)

P/s: Ko chắc

28 tháng 5 2018

Dùng cauchy-schawarz là ra nhé :)

26 tháng 6 2019

Gợi ý này: Đặt \(a=x^3,b=y^3,c=z^3\) rồi áp dụng bất đẳng thức này \(x^3+y^3\ge xy\left(x+y\right)\) rồi biến đổi 1 chút nx là ra

7 tháng 10 2017

ta có:

\(A^2=\left(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\right)^2\le\left(a+b+c\right)\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\) (BĐT Bu-nhi-a)

=>\(A^2\le\sqrt{3}\left(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\right)\)      (*)

mặt khác ta có: \(a^2+1\ge2a\) (BĐT cauchy ) =>\(\frac{a}{a^2+1}\le\frac{1}{2}\)

tương tự ta có: \(\frac{b}{b^2+1}\le\frac{1}{2}\)    ;    \(\frac{c}{c^2+1}\le\frac{1}{2}\)

=> \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)     (**)  

từ (*),(**) => \(A^2\le\sqrt{3}.\frac{3}{2}=\frac{3\sqrt{3}}{2}\)

=>\(A\le\sqrt{\frac{3\sqrt{3}}{2}}\)

=> GTLN của A là \(\sqrt{\frac{3\sqrt{3}}{2}}\)   <=> a=b=c<\(\frac{\sqrt{3}}{3}\)

8 tháng 10 2017

Ta có:

\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}}\)

\(\le\frac{\sqrt[8]{27}a}{\sqrt{4\sqrt[4]{a^2}}}=\frac{\sqrt[8]{27a^6}}{2}\)

\(=\frac{\sqrt{3}}{2}.\sqrt[8]{a^6.\frac{1}{3}}\)

\(\le\frac{\sqrt{3}}{2}.\frac{6a+\frac{2}{\sqrt{3}}}{8}\left(1\right)\)

Tương tự ta cũng có:

\(\hept{\begin{cases}\frac{b}{\sqrt{b^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6b+\frac{2}{\sqrt{3}}}{8}\left(2\right)\\\frac{c}{\sqrt{c^2+1}}\le\frac{\sqrt{3}}{2}.\frac{6c+\frac{2}{\sqrt{3}}}{8}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) 

\(\Rightarrow A\le\frac{\sqrt{3}}{2}.\left(\frac{6}{8\sqrt{3}}+\frac{6}{8}\left(a+b+c\right)\right)\)

\(\le\frac{\sqrt{3}}{2}.\left(\frac{3}{4\sqrt{3}}+\frac{3\sqrt{3}}{4}\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)        

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)

9 tháng 1 2020

\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\frac{a}{bc\left(a+1\right)}=\frac{\frac{1}{x}}{\frac{1}{y}\cdot\frac{1}{z}\left(\frac{1}{x}+1\right)}=\frac{xyz}{x\left(x+1\right)}=\frac{yz}{x+1}\)

Tươn tự rồi cộng vế theo vế:

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{\left(x+y\right)^2}{4\left(z+1\right)}+\frac{\left(y+z\right)^2}{4\left(x+1\right)}+\frac{\left(z+x\right)^2}{4\left(y+1\right)}\)

Đặt \(x+y=p;y+z=q;z+x=r\Rightarrow p+q+r=2\)

\(A\le\Sigma\frac{\left(x+y\right)^2}{4\left(z+1\right)}=\Sigma\frac{\left(x+y\right)^2}{4\left[\left(z+y\right)+\left(z+x\right)\right]}=\frac{p^2}{4\left(q+r\right)}+\frac{r^2}{4\left(p+q\right)}+\frac{q^2}{4\left(p+r\right)}\)

Sau khi đổi biến,cô si thì em ra thế này.Ai đó giúp em với :)