K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có

\(A=\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{c}+\frac{c}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng bđt Cauchy ta có

\(A\ge3+2-2-2=1\)(đpcm)

Dấu "=" xảy ra khi a=b=c=1

7 tháng 6 2019

\(\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\ge1\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c+a\right)\ge0\)(đúng)

Vậy bài toán được chứng minh

NV
22 tháng 2 2020

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{z^3xy}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\sqrt[3]{xyz}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

4 tháng 5 2018

a + b5 + c

= ( a+b+c )

= 0 chia het cho 30

4 tháng 5 2018

Ta có :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\)

\(=\frac{ab-1}{b}.\frac{bc-1}{c}.\frac{ac-1}{a}\)

Ta lại có : \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(=\frac{a^2-1}{a}.\frac{b^2-1}{b}.\frac{c^2-1}{c}\)

16 tháng 10 2020

Xí trước phần b

Ta có: \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(c+a\right)}+\frac{abc}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2b+ca^2}+\frac{ca}{b^2c+ab^2}+\frac{ab}{c^2a+bc^2}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2bc^2}+\frac{c^2a^2}{ab^2c^2+a^2b^2c}+\frac{a^2b^2}{a^2bc^2+ab^2c^2}\)

\(=\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{bc+ab}+\frac{\left(ab\right)^2}{ca+bc}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

16 tháng 10 2020

Cách làm khác của phần b ngắn gọn hơn:)

Ta có; \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

\(=\frac{\left(\frac{1}{a}\right)^2}{ab+ca}+\frac{\left(\frac{1}{b}\right)^2}{bc+ab}+\frac{\left(\frac{1}{c}\right)^2}{ca+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

28 tháng 8 2019

\(sigma\frac{a^2+b^2}{ab\left(a+b\right)^3}\ge sigma\frac{\frac{\left(a+b\right)^2}{2}}{\left(a+b\right)^2\left(a^3+b^3\right)}=sigma\frac{1}{2\left(a^3+b^3\right)}\ge\frac{9}{4\left(a^3+b^3+c^3\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

28 tháng 10 2019

Ta có :

\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)

Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .

Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)

28 tháng 10 2019

Dấu "=" còn xảy ra ở các TH: 

a = b = 1, c bất kì .

a = c =1, b bất kì

b = c = 1,  a bất kì

( a, b, c ko nhỏ hơn 1 )

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33