Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đẳng thức.... Miny.vn - Cộng đồng hỗ trợ học tập
do a,b,c là độ dài các cạnh nên bài trong link ko xảy ra dấu "=" tức là bài đó >1 chính là bài này
Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)
\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).
ĐTXR \(\Leftrightarrow a=b=c=1\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
Lời giải:
Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\) $(x,y,z>0$ do $a,b,c$ là 3 cạnh tam giác.
Khi đó:
\(\text{VT}=\frac{(a+b)^2-c^2}{2ab}+\frac{(b+c)^2-a^2}{2bc}+\frac{(c+a)^2-b^2}{2ca}-3\)
\(=(a+b+c)\left(\frac{a+b-c}{2ab}+\frac{b+c-a}{2bc}+\frac{c+a-b}{2ca}\right)-3\)
\(=2(x+y+z)\left(\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\right)-3\)
\(=4(x+y+z).\frac{xy+yz+xz}{(x+y)(y+z)(x+z)}-3\)
\(=4.\frac{xy(x+y)+yz(y+z)+xz(x+z)+3xyz}{(x+y)(y+z)(x+z)}-3=4.\frac{(x+y)(y+z)(x+z)+xyz}{(x+y)(y+z)(x+z)}-3\)
\(>4.\frac{(x+y)(y+z)(x+z)}{(x+y)(y+z)(x+z)}-3=4-3=1\)
Ta có đpcm.
\(\)
Lời giải:
Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\) $(x,y,z>0$ do $a,b,c$ là 3 cạnh tam giác.
Khi đó:
\(\text{VT}=\frac{(a+b)^2-c^2}{2ab}+\frac{(b+c)^2-a^2}{2bc}+\frac{(c+a)^2-b^2}{2ca}-3\)
\(=(a+b+c)\left(\frac{a+b-c}{2ab}+\frac{b+c-a}{2bc}+\frac{c+a-b}{2ca}\right)-3\)
\(=2(x+y+z)\left(\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\right)-3\)
\(=4(x+y+z).\frac{xy+yz+xz}{(x+y)(y+z)(x+z)}-3\)
\(=4.\frac{xy(x+y)+yz(y+z)+xz(x+z)+3xyz}{(x+y)(y+z)(x+z)}-3=4.\frac{(x+y)(y+z)(x+z)+xyz}{(x+y)(y+z)(x+z)}-3\)
\(>4.\frac{(x+y)(y+z)(x+z)}{(x+y)(y+z)(x+z)}-3=4-3=1\)
Ta có đpcm.
\(\)
coi lại dấu " = " xảy ra khi nào dùm t ... , bài lm của m hay mak kl như cái qq ...