Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
<=>(a+b)(a-b)-(c+d)(c-d)=(a-b)(a+b)-(c-d)(c+d) ---- Đẳng thức đúng vs mọi a,b,c,d
Xem lại đề
Ta có: \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự: \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{b+d+a}< \frac{d+c}{a+b+c+d}\left(6\right)\)
Cộng vế với vế (3);(4);(5);(6) ta có:
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\left(đpcm\right)\)
Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm
nguồn:soyeon_Tiểubàng giải
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
Áp dụng tính chất tỉ số ta có: \(\frac{a+b+d}{a+b+c+d}>\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\left(1\right)\)
Tương tự: với b,c rồi cộng vế theo vế có ĐPCM
a) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
b) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
c) \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(a,b,c,d>0\). Chứng minh \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
\(1< A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
(*) C/m A>2
Trước hết ta có với x>y>0 và m>0
luôn có \(\frac{y}{x}< \frac{y+p}{x+p}\) (1)
c/m: \(\Leftrightarrow xy+ym< xy+xm\Leftrightarrow m\left(x-y\right)>0\) luôn đúng => (1) được c/m.
áp (1) vào từng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}\\ \)
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)=>(*) dpc/m
(**)C/m A>1: ta có với x>0 và m>0=> \(x>\frac{x}{x+m}\\ \) (2)
Áp (2) vào tầng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}\\ \)
\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=\frac{a+b+c+d}{a+b+c+d}=1\) => (**)dpcm
Từ (*) và (**) =>\(1< A< 2\)=> dpcm