K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 4 2018

Lời giải:

Ta có:

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Rightarrow x^2+y^2+z^2=\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)(a^2+b^2+c^2)\)

\(\Leftrightarrow x^2+y^2+z^2=x^2+\frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+y^2+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+z^2+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}\)

\(\Leftrightarrow \frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}=0(*)\)

Bởi vì mỗi số hạng trong tổng $(*)$ đều là những số không âm, cho nên để tổng các số không âm bằng $0$ thì bản thân mỗi số đó phải bằng $0$

Do đó:
\(\Leftrightarrow \frac{x^2b^2}{a^2}=\frac{x^2c^2}{a^2}=\frac{y^2a^2}{b^2}=\frac{y^2c^2}{b^2}=\frac{z^2a^2}{c^2}=\frac{z^2b^2}{c^2}=0\)

Do $a,b,c\neq 0$ nên \(x^2=y^2=z^2=0\Rightarrow x=y=z=0\)

Khi đó:\(T=x^{2016}+y^{2016}+z^{2016}=0\)

2 tháng 9 2017

T đi chơi rồi

làm giúp đi,khó quá ==

19 tháng 12 2020

Bài này dễ thôi:vv

Theo đề ta có: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)

Lại có:\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ca}{xz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+cay}{xyz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2.0=4\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=2\)

Vậy...

19 tháng 12 2020

Bn giỏi ghê Lý Mặc Dương , khâm phục bạn thật!!

 

24 tháng 2 2020

Cô ơi em có cách khác ạ :)

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)

Dấu "=" xảy ra tại x=y=z=0

Khi đó T=0

23 tháng 2 2020

Ta có: 

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

<=> \(\left(a^2+b^2+c^2\right)\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)

<=> \(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\frac{x^2}{a^2}+\left(a^2+b^2+c^2\right)\frac{y^2}{b^2}+\left(a^2+b^2+c^2\right)\frac{z^2}{c^2}\)

<=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)

vì a, b , c khác 0 nên \(\frac{\left(b^2+c^2\right)}{a^2};\frac{\left(c^2+a^2\right)}{b^2};\frac{\left(b^2+a^2\right)}{c^2}\ne0\)

\(\frac{\left(b^2+c^2\right)}{a^2}x^2\ge0;\frac{\left(a^2+c^2\right)}{b^2}y^2\ge0;\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x, y, z

=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x; y; z

Do đó: \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)

=> x = y = z = 0

Vậy T = 0 

15 tháng 1 2021

Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:

\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).

\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)

\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).

Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).

Do đó x = 0.

Kết hợp với x + y + z = 2010 thì y + z = 2010.

Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.

Vậy...