K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

b) Xét đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) + Trong đường tròn đường kính MC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp cùng chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Trong đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 4 2022

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

ˆCDB=ˆCAB=900CDB^=CAB^=900

Do đó: ABCD là tứ giác nội tiếp

b: ˆBCA=ˆADBBCA^=ADB^

mà ˆADB=ˆKCAADB^=KCA^

nên ˆBCA=ˆKCABCA^=KCA^

hay CA là tia phân giác của góc KCB

a: Xét (O) có

ΔMDC nội tiếp

MC là đường kính

=>ΔMDC vuông tại D

góc CAB=góc CDB=90 đọ

=>ABCD nội tiếp

b: góc SCA=góc ADB

góc ADB=góc ACB

=>góc SCA=góc ACB

=>CA là phân giác của góc SCB

17 tháng 4 2017

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 4 2017

a, ta có ^BAC=900(góc nội tiếp chắn nửa đường tròn đường kính BC)

^MDC=900(góc nội tiếp chắn nửa đường tròn đường kính MC)

=>^BAC=^MDC(=900)

=>tứ giác ABCD nội tiếp (hai đỉnh A và D kề nhau cùng nhìn cạnh BC dưới hai góc bằng nhau)

b. vì tứ giác ABCD nội tiếp (câu a) nên ^ABD=^ACD (hai góc nội tiếp cùng chắn cung AD)

c, ta có bốn điểm D,S,C,M cùng thuộc đường tròn đường kính MC

=>tứ giác DSCM nội tiếp

=>^ADM=^SCM (cùng bù với ^MDS)

Mà ADCB nội tiếp nên ^ADM=^MCB( hai góc nội tiếp cùng chắn cung AB)

Do đó ^SCM=^MCB

=>CA là tia phân giác ^SCB