K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

hình bạn tự vẽ nha

a)Xét tam giác BED và tam giác BEC có

BD=BC(giả thiết)

góc DBE= góc CBE(giả thiết)

cạnh BE chung

=>tam giác BED=tam giác BEC(c.g.c)(đpcm)

b)xét tam giác BKD và tam giác BKC có

BD=BC(giả thiết)

góc DBK= góc CBK(giả thiết)

Cạnh BK chung

=>tam giác BKD= tam giác BKC(c.g.c)

=>DK=CK(2 cạnh tương ứng)

Do đó tam giác CKD cân tại K

c)vì tam giác BED= tam giác BEC(theo phần a)

=>DE=CE(2 cạnh tương ứng)

Vì tam giác CKD cân tại K

=>góc KDE= góc KCE

xét tam giác KED và tam giác KEC có

KC=KD(theo phần b0

Góc KDE=góc KCE(chứng minh trên)

CE=DE(chứng minh trên)

=>tam giác KED = tam giác KEC (c.g.c)

góc KED=góc KEC(2 góc tương ứng)

mà 2 góc này kề bù

=>góc KED=góc KEC=180 độ : 2=90 độ

vì AH // BE

=>góc AHE= góc BEH

mà 2 góc này ở vị trí trong cùng phía

=>góc AHE+ góc BEH=180 độ

=>góc AHE= góc BEH=180 độ :2=90 độ

do đó AH vuông góc với DC

a: Xét ΔBED và ΔBEC có 

BE chung

\(\widehat{DBE}=\widehat{CBE}\)

BD=BC

Do đó: ΔBED=ΔBEC

b:Xét ΔCDK có

KE là đường cao

KE là đường trung tuyến

Do đó: ΔCDK cân tại K

17 tháng 2 2015

cho hoi pan hoc truong nao?(nhớ nói đúng sự thật ) vì tui co1 bạn tên này

25 tháng 12 2018

a) Xét tam giác BAD và tam giác BED ta có 

         AB=AD(gt)

         góc B1= góc B2 (tia phân giác)

         BD chung

  tam giác BAD = tam giác BED (c.g.c)

 Suy ra: góc A = góc E ( 2 góc tương ứng )

b) Ta có : góc H =E ( =90 độ)

suy ra : AH//DE ( vì AH và DE cùng vuông với BC)

Còn câu c để mình nghĩ lốt nha

26 tháng 12 2018

giup mk vs

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)

mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE\(\perp\)AK(gt)

Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)

23 tháng 1 2022

a) Ta có: AD=AB+BD(B nằm giữa A và D)

AC=AE+EC(E nằm giữa A và C)

mà AB=AE(gt)

và BD=CE(gt)

nên AD=AC

Xét ΔADC có AD=AC(cmt)

nên ΔADC cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABE có AB=AE(gt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABE cân tại A(cmt)

nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)

Ta có: ΔADC cân tại A(cmt)

nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)

Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^

mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị

nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BE//DC(cmt)

BE⊥⊥AK(gt)

Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)

Ta có: ΔADC cân tại A(cmt)

mà AK là đường cao ứng với cạnh đáy DC(cmt)

nên AK là đường trung trực của DC(Định lí tam giác cân)

16 tháng 12 2022

a: Xét ΔBID và ΔBIC có

BD=BC

góc CBI=góc DBI

BI chung

Do đó: ΔBID=ΔBIC

b: Xét ΔBEC và ΔBED có

BE chung

góc EBC=góc EBD

BC=BD

Do đó: ΔBEC=ΔBED

=>ED=EC

c: ΔBCD cân tại B

mà BI là đường phân giác

nên BI vuông góc với CD

=>BI//AH