Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha
a)Xét tam giác BED và tam giác BEC có
BD=BC(giả thiết)
góc DBE= góc CBE(giả thiết)
cạnh BE chung
=>tam giác BED=tam giác BEC(c.g.c)(đpcm)
b)xét tam giác BKD và tam giác BKC có
BD=BC(giả thiết)
góc DBK= góc CBK(giả thiết)
Cạnh BK chung
=>tam giác BKD= tam giác BKC(c.g.c)
=>DK=CK(2 cạnh tương ứng)
Do đó tam giác CKD cân tại K
c)vì tam giác BED= tam giác BEC(theo phần a)
=>DE=CE(2 cạnh tương ứng)
Vì tam giác CKD cân tại K
=>góc KDE= góc KCE
xét tam giác KED và tam giác KEC có
KC=KD(theo phần b0
Góc KDE=góc KCE(chứng minh trên)
CE=DE(chứng minh trên)
=>tam giác KED = tam giác KEC (c.g.c)
góc KED=góc KEC(2 góc tương ứng)
mà 2 góc này kề bù
=>góc KED=góc KEC=180 độ : 2=90 độ
vì AH // BE
=>góc AHE= góc BEH
mà 2 góc này ở vị trí trong cùng phía
=>góc AHE+ góc BEH=180 độ
=>góc AHE= góc BEH=180 độ :2=90 độ
do đó AH vuông góc với DC
a: Xét ΔBED và ΔBEC có
BE chung
\(\widehat{DBE}=\widehat{CBE}\)
BD=BC
Do đó: ΔBED=ΔBEC
b:Xét ΔCDK có
KE là đường cao
KE là đường trung tuyến
Do đó: ΔCDK cân tại K
cho hoi pan hoc truong nao?(nhớ nói đúng sự thật ) vì tui co1 bạn tên này
a) Xét tam giác BAD và tam giác BED ta có
AB=AD(gt)
góc B1= góc B2 (tia phân giác)
BD chung
tam giác BAD = tam giác BED (c.g.c)
Suy ra: góc A = góc E ( 2 góc tương ứng )
b) Ta có : góc H =E ( =90 độ)
suy ra : AH//DE ( vì AH và DE cùng vuông với BC)
Còn câu c để mình nghĩ lốt nha
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)
mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE\(\perp\)AK(gt)
Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^
mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE⊥⊥AK(gt)
Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)
a: Xét ΔBID và ΔBIC có
BD=BC
góc CBI=góc DBI
BI chung
Do đó: ΔBID=ΔBIC
b: Xét ΔBEC và ΔBED có
BE chung
góc EBC=góc EBD
BC=BD
Do đó: ΔBEC=ΔBED
=>ED=EC
c: ΔBCD cân tại B
mà BI là đường phân giác
nên BI vuông góc với CD
=>BI//AH