Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Ta có: \(\left(y-5\right)\left(y+8\right)-\left(y+4\right)\left(y-1\right)\)
\(=y^2+8y-5y-40-y^2+y-4y+4\)
=-36
b: Ta có: \(y^4-\left(y^2-1\right)\left(y^2+1\right)\)
\(=y^4-y^4+1\)
=1
Bài 2:
a: \(\left(2a-b\right)\left(4a+b\right)+2a\left(b-3a\right)\)
\(=8a^2+2ab-4ab-b^2+2ab-6a^2\)
\(=2a^2-b^2\)
b: \(\left(3a-2b\right)\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=6b^2-7ab\)
c: \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-xb\)
\(=3b^2-7xb+2x^2\)
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)
\(\Leftrightarrow4a^2-4ab-ab+b^2\)
\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)
\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)
\(TH2:\) \(a-b=0\)
\(\Rightarrow a=b\)
\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)
\(\Rightarrow A=\dfrac{1}{3}\)
Bài 1:
a^2-5ab-6b^2=0
=>a^2-6ab+ab-6b^2=0
=>a*(a-6b)+b(a-6b)=0
=>(a-6b)(a+b)=0
=>a=-b hoặc a=6b
TH1: a=-b
\(A=\dfrac{-2b-b}{-3b-b}+\dfrac{5b+b}{-3b+b}=\dfrac{-3}{-4}+\dfrac{6}{-2}=\dfrac{3}{4}-3=-\dfrac{9}{4}\)
TH2: a=6b
\(A=\dfrac{12b-b}{18b-b}+\dfrac{5b-6b}{18b+b}=\dfrac{11}{17}+\dfrac{-1}{19}=\dfrac{192}{323}\)
Kham khảo bài lm này nhé:
\(2a^2+2b^2=5ab\\ \Leftrightarrow2a^2-5ab+2b^2=0\\ \Leftrightarrow2a^2-4ab-ab+2b^2=0\\ \Leftrightarrow2a\left(a-2b\right)+b\left(a-2b\right)=0\\ \Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-\dfrac{b}{2}\\a=2b\end{matrix}\right.\)
Với \(a=-\dfrac{b}{2}\Leftrightarrow Q=\dfrac{-\dfrac{b}{2}+b}{-\dfrac{b}{2}-b}=\dfrac{b}{2}:\dfrac{-3b}{2}=\dfrac{b}{-3b}=-\dfrac{1}{3}\)
Với \(a=2b\Leftrightarrow Q=\dfrac{3b}{b}=3\)