Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)
M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)
M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)
M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)
Thay abc = 2 vào biểu thức A ta được:
\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc\cdot c}{ac+abc+abc}\\ A=\dfrac{1}{b+1+bc}+\dfrac{b}{bc+b+1}+\dfrac{bc}{1+bc+b}\\ A=\dfrac{1+b+bc}{1+b+bc}\\ A=1\)
Hàng thứ 2 phải sửa lại như vậy:
\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc.c}{ac+abc.c+abc}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{ac+1+c}{ac+c+1}\)
\(A=1\)
\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)
\(A=1\)
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Lười đánh máy thật sự, buốt tay lắm:((
Ta có: \(Q=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac+1+c}{1+ac+c}=1\)
Vậy Q=1
Q=ab+a+1a+bc+b+1b+ac+c+1c
Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}Q=c(ab+a+1)ac+ac(bc+b+1)abc+ac+c+1c
Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}Q=abc+ac+cac+abc2+abc+acabc+ac+c+1c
Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}Q=1+ac+cac+c+a+ac1+ac+c+1c
Q=\dfrac{ac+1+c}{1+ac+c}=1Q=1+ac+cac+1+c=1
chúc bạn thi tốt
\(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{abc+ab+a}+\dfrac{2c}{ac+2c+abc}\)
\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{2+ab+a}+\dfrac{2}{a+2+ab}\)
\(=\dfrac{ab+a+2}{ab+a+2}=1\)
\(N=\dfrac{\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3}{\left(ab\right)\left(bc\right)\left(ca\right)}\)
Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\Rightarrow N=\dfrac{x^3+y^3+z^3}{xyz}\)
\(N=\dfrac{x^3+y^3+z^3-3xyz+3xyz}{xyz}=\dfrac{\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]+3xyz}{xyz}=\dfrac{3xyz}{xyz}=3\)
Bài 2:
a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)
Vì \(a+b+c=0\)
Nên a + b = -c (1)
Thay (1) vào A, ta được:
\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)
\(A=\dfrac{1}{abc}.3abc\)
\(A=3\)
b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)
Vì \(a+b+c=0\)
Nên b + c = -a
=> ( b + c )2 = (-a)2
=> b2 + c2 + 2bc = a2
=> b2 + c2 = a2 - 2bc (1)
Tương tự ta có: c2 + a2 = b2 - 2ac (2)
a2 + b2 = c - 2ab (3)
Thay (1), (2) và (3) vào B, ta được:
\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)
\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)
\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)
\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)
Mà \(a^3+b^3+c^3=3abc\) ( câu a )
\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)
\(\Rightarrow B=\dfrac{3}{2}\)
Bài 1:
a) GT: abc = 2
\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)
\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)
\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(M=\dfrac{1+b+bc}{bc+b+1}\)
\(M=1\)
b) GT: abc = 1
\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)
\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)
\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)
\(N=\dfrac{1+b+bc}{bc+b+1}\)
\(N=1\)
ta có : \(A=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)
\(=\dfrac{a}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{abc^2+abc+ac}\)
\(=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\) \(=\dfrac{bc+b+1}{bc+b+1}=1\) (sữa đề)