ai choi poke dai chien ko?
CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Câu 16. Tìm giá trị lớn nhất của biểu thức:
Câu 17. So sánh các số thực sau (không dùng máy tính):
Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3
Câu 19. Giải phương trình: .
Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Đề này của bọn Vĩnh Phúc thì phải
Xét hàm \(f\left(c\right)\)trên [1;2] trong đó
\(f\left(c\right)=\left(\frac{\left(6-c\right)^2}{4}+2\right)^2\left(c^2+2\right)\)
\(f'\left(c\right)=-2\left(\frac{\left(6-c\right)^2}{4}+2\right)\left(\frac{6-c}{2}\right)\left(c^2+2\right)+\left(\frac{\left(6-c\right)^2}{4}+2\right)^2.2c\)
\(=\left(\frac{\left(6-c\right)^2}{4}+2\right)^2.\left(2c-\frac{\left(6-c\right)\left(c^2+2\right)}{\frac{\left(6-c\right)^2}{4}+2}\right)\)
\(=2\left(\frac{\left(6-c\right)^2}{4}+2\right)^2\left(\frac{c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)}{\left(6-c\right)^2+8}\right)\)
Ta đi xét dấu của \(c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)\)trên (1;2)
Ta có : \(c\left[\left(6-c\right)^2+8\right]-2\left(6-c\right)\left(c^2+2\right)=3\left(c^3-8c^2+16c-8\right)\)
\(=3\left(c-2\right)\left(c^2-6c+4\right)\)
\(=3\left(c-2\right)\left(c-3-\sqrt{5}\right)\left(c-3+\sqrt{5}\right)\)
\(>0\forall c\in\left(1;2\right)\)
Do đó \(f'\left(c\right)>0\forall c\in\left(1;2\right)\)nên hàm f(c) đồng biến trên [1;2]
Từ đó suy ra \(f\left(c\right)\le f\left(2\right)=216\)
Dấu ''='' <=> a = b = c = 2