Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồng bậc : \(BDT\Leftrightarrow9abc+2\left(a+b+c\right)^3\ge7\left(ab+bc+ca\right)\left(a+b+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(c-a\right)^2\ge0\)( đúng)\(\Rightarrow DPcm\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\le\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\)
Tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}\) ; \(\dfrac{c+a}{ca+b^2}\le\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)
Cộng vế:
\(VT\le\dfrac{1}{a}\left(\dfrac{b^2}{b^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)+\dfrac{1}{b}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{c^2}{a^2+c^2}\right)+\dfrac{1}{c}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{b^2}{a^2+b^2}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Lời giải:
\(a+b+c+\frac{9abc}{ab+bc+ac}\geq 4\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)
\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq 4(ab+bc+ac)\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)
\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq \frac{4a^2b^2}{a+b}+4abc+\frac{4b^2c^2}{b+c}+4abc+\frac{4a^2c^2}{a+c}+4abc\)
\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq \frac{4a^2b^2}{a+b}+\frac{4b^2c^2}{b+c}+\frac{4a^2c^2}{a+c}(*)\)
Áp dụng BĐT AM-GM:
\(4ab\leq (a+b)^2\Rightarrow \frac{4a^2b^2}{a+b}\leq \frac{ab(a+b)^2}{a+b}=ab(a+b)\)
TT: \(\frac{4b^2c^2}{b+c}\leq bc(b+c); \frac{4c^2a^2}{c+a}\leq ac(a+c)\)
Cộng các BĐT trên ta thu được BĐT $(*)$. Tức là $(*)$ luôn đúng, kéo theo BĐT ban đầu luôn đúng
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Hoàn toàn tương tự với các phân thức còn lại, ta có:
\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$
\(\Leftrightarrow2+9abc\ge7\left(ab+bc+ca\right)\)(1)
Đặt \(\left\{{}\begin{matrix}abc=r\\ab+bc+ca=q\\a+b+c=p\end{matrix}\right.\)
Ta có:\(r\ge\frac{p\left(4q-p^2\right)}{9}\)(cái này bạn gõ schur trên gg là ra)
\(\Leftrightarrow9r\ge4q-1\)
\(\Rightarrow2+9r\ge2+4q-1=1+4q\)
Lại có:\(3q\le p^2=1\)(bạn tự chứng minh)
\(\Rightarrow1+4q\ge3q+4q=7q\)
\(\Rightarrow2+9r\ge7q\left(đpcm\right)\)
"="\(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cách 1:
BĐT \(\Leftrightarrow7\left(a+b+c\right)\left(ab+bc+ca\right)\le2\left(a+b+c\right)^3+9abc\)
\(VP-VT=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)
Ta có đpcm. Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Cách 2:
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\) thì 3u = 1. Chú ý \(\frac{\left(a+b+c\right)^2}{3}\ge\left(ab+bc+ca\right)\Rightarrow3u^2\ge3v^2\Rightarrow u^2\ge v^2\)
Cần chứng minh: \(21v^2\le2+9w^3\Leftrightarrow63uv^2\le54u^3+9w^3\)
\(RHS-LHS=9\left(w^3+3u^3-4uv^2\right)+27u\left(u^2-v^2\right)\ge0\)
Đúng theo BĐT Schur bậc 3.
P/s: Em không chắc ở cách 2.
Một bài bất đẳng thức khá đặc trưng với phương pháp đổi biến p,q,r. Mình sẽ phiên từ lời giải đổi biến sang biến đổi tương đương nhé.
\(ab+bc+ca\le\dfrac{2}{7}+\dfrac{9abc}{7}\\ \Leftrightarrow7\left(ab+bc+ca\right)\left(a+b+c\right)\le2\left(a+b+c\right)^3+9abc\\ \Leftrightarrow7\left(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b+3abc\right)\le2\left(a^3+b^3+c^3+3a^2b+3a^2c+3b^2c+3b^2a+3c^2a+3c^2b+6abc\right)+9abc\\ \Leftrightarrow2a^3+2b^3+2c^3\ge a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\left(1\right)\)Thật vậy, áp dụng bất đẳng thức Cosi cho cặp 3 số dương ta có:
\(a^3+a^3+b^3\ge3a^2b;b^3+b^3+c^3\ge3b^2c;c^3+c^3+a^3\ge3c^2a\\ \Rightarrow a^3+b^3+c^3\ge a^2b+b^2c+c^2a\)
Tương tự : \(a^3+b^3+c^3\ge a^2c+b^2a+c^2b\)
Suy ra (1) được chứng minh
Dấu bằng xảy ra khi và chỉ khi a=b=c=1/3
---- Tick cho mình với -----