K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2022

\(\Leftrightarrow a\left(a+2\right)\left(c+2\right)+b\left(a+2\right)\left(c+2\right)+c\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)\left(c+2\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+ab^2+bc^2+ca^2\le8+abc\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le2+abc\)

Không mất tính tổng quát, giả sử \(b=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge b^2+ac\)

\(\Leftrightarrow ab^2+ca^2\le a^2b+abc\)

\(\Rightarrow ab^2+bc^2+ca^2\le bc^2+a^2b+abc=b\left(a^2+c^2\right)+abc=b\left(2-b^2\right)+abc\)

\(=2+abc-\left(b-1\right)^2\left(b+2\right)\le2+abc\) (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=(a+b+c)-2\left(\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\right)\)

Áp dụng BĐT Cauchy cho các số dương:

\(\text{VT}\geq (a+b+c)-2\left(\frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\right)\)

\(\Leftrightarrow \text{VT}\geq (a+b+c)-\frac{2}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Áp dụng BĐT Cauchy tiếp:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}\)

\(=\frac{2(ab+bc+ac)+3}{3}\leq \frac{2.\frac{(a+b+c)^2}{3}+3}{3}\)

Do đó: \(\text{VT}\geq (a+b+c)-\frac{2}{3}.\frac{2.\frac{(a+b+c)^2}{3}+3}{3}=1\) do $a+b+c=3$

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

NV
30 tháng 7 2021

ĐKXĐ: \(ab+bc+ca\ne0\)

- Nếu 1 biến bằng 0 thì BĐT hiển nhiên đúng

- Nếu cả 3 biến đều khác 0:

\(\Leftrightarrow\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ca}+\dfrac{2c^2}{2c^2+ab}\le2\)

\(\Leftrightarrow\dfrac{bc}{2a^2+bc}+\dfrac{ca}{2b^2+ca}+\dfrac{ab}{2c^2+ab}\ge1\)

Ta có:

\(VT=\dfrac{\left(bc\right)^2}{2a^2bc+\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{2ab^2c+\left(ca\right)^2}+\dfrac{\left(ab\right)^2}{2abc^2+\left(ab\right)^2}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)}=\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi 3 biến bằng nhau hoặc 1 biến bằng 0, 2 biến bằng nhau

25 tháng 5 2022
\(a,b,c>0\)

\(\dfrac{a}{\sqrt{a^2+15bc}}+\dfrac{b}{\sqrt{b^2+15ca}}+\dfrac{c}{\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{3}{4}\)

Áp dụng BĐT Caushy-Schwarz ta được:

\(\dfrac{a^2}{a\sqrt{a^2+15bc}}+\dfrac{b^2}{b\sqrt{b^2+15ca}}+\dfrac{c^2}{c\sqrt{c^2+15ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}}\)

Ta chứng minh rằng:

\(a\sqrt{a^2+15bc}+b\sqrt{b^2+15ca}+c\sqrt{c^2+15ab}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

\(\Leftrightarrow\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\dfrac{4}{3}\left(a+b+c\right)^2\)

Áp dụng BĐT Bunhiacopxki ta được:

\(\sqrt{a}\sqrt{a^3+15abc}+\sqrt{b}\sqrt{b^3+15abc}+\sqrt{c}\sqrt{c^3+15abc}\le\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+45abc\right)}\)Ta tiếp tục chứng minh:

\(\dfrac{16}{9}\left(a+b+c\right)^3\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge a^3+b^3+c^3+45abc\)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right)\ge\dfrac{16}{9}\left(a^3+b^3+c^3+3.2\sqrt{ab}.2.\sqrt{bc}.2.\sqrt{ca}\right)=\dfrac{16}{9}.\left(a^3+b^3+c^3+24abc\right)\)

Ta chứng minh:

\(\dfrac{16}{9}\left(a^3+b^3+c^3+24abc\right)\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{16}{9}a^3+\dfrac{16}{9}b^3+\dfrac{16}{9}c^3+\dfrac{16}{9}.24abc\ge a^3+b^3+c^3+45abc\)

\(\Leftrightarrow\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{3}abc\) (*)

Áp dụng BĐT AM-GM (Caushy) ta được:

\(\dfrac{7}{9}\left(a^3+b^3+c^3\right)\ge\dfrac{7}{9}.3\sqrt[3]{a^3b^3c^3}=\dfrac{7}{3}abc\)

\(\Rightarrow\) (*) đúng.

Vậy BĐT đã được chứng minh. Dấu "=" xảy ra khi \(a=b=c>0\).

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5) biết x,y,z,u\(\ge0\)và...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

Bài 1: a) ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\) \(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\) vậy...
Đọc tiếp

Bài 1:

a)

ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)

\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)

vậy \(A=\dfrac{1}{2}\)

b)

\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)

Bài 2:

\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)

suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)

\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)

giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)

hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)

\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)

b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)

\(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)

hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)

bài 3:

a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)

b) áp dụng BĐT tam giác, ta có:

\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)

suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0­\: ­\: ­\: ­\: ­\: ­\: \)

đồng thời \(abc>0\) với mọi a, b, c dương.

nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)

ko tìm dc dấu bằng xảy ra.

3
22 tháng 5 2017

hãy lướt qua và coi như ko có j -_-

22 tháng 5 2017

@Nguyễn Huy Tú