K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{2-a^2-b^2}=1+\frac{2ab}{2c^2+a^2+b^2}\)

\(=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le1+\frac{ab}{\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}=1+\sqrt{\frac{a^2b^2}{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

5 tháng 4 2018

Áp dụng BĐT  Cô si, ta có: 

\(\begin{aligned} \frac{1}{1-ab}&=1+\frac{ab}{1-ab} \le 1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{a^2+b^2+2c^2} \\ &=1+\frac{2ab}{(a^2+c^2)+(b^2+c^2)}\le 1+\frac{ab}{\sqrt{(a^2+c^2)(b^2+c^2)}}\\& \le 1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right). \text{ }(1)\end{aligned}\)

Tương tự \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{a^2+c^2}\right)\left(2\right)\)

               \(\frac{1}{1-ca}\le1+\frac{1}{2}\left(\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+b^2}\right)\left(3\right)\)

\(\Rightarrow VT\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

           

11 tháng 10 2016

Ta có : \(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\)

\(\le1+\frac{a.b}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Tương tự , ta chứng minh được \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\right)\)

\(\frac{1}{1-ac}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\right)\)

Cộng theo vế : \(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)

 

đặt \(A=\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\)

\(\Rightarrow A-3=P=\frac{ab}{1-ab}+\frac{bc}{1-bc}+\frac{ca}{1-ca}\)

áp dụng BĐT cô-si ta có:

\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca\)

\(\Rightarrow\frac{a^2+b^2}{2}\ge ab;\frac{b^2+c^2}{2}\ge bc;\frac{c^2+a^2}{2}\ge ca\)

\(\Rightarrow1-\frac{a^2+b^2}{2}\le1-ab;1-\frac{b^2+c^2}{2}\le1-bc;1-\frac{c^2+a^2}{2}\le1-ca\)

\(\Rightarrow P\le\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{2bc}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{2ca}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\right)\)

Áp dụng BĐT Schwarts ta có:

\(\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\)

\(\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

\(\frac{\left(c+a\right)^2}{\left(a^2+b^2\right)+\left(b^2+c^2\right)}\le\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{1}{2}.3=\frac{3}{2}\)

\(\Rightarrow P+3\le\frac{3}{2}+3\)

\(\Rightarrow A\le\frac{9}{2}\)

dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

6 tháng 6 2020

Bất đẳng thức cần chứng minh tương đương: \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{-9}{2}\)

Theo bất đẳng thức Bunyakovsky dạng phân thức, ta được:  \(\frac{1}{ab-1}+\frac{1}{bc-1}+\frac{1}{ca-1}\ge\frac{9}{ab+bc+ca-3}\)

\(\ge\frac{9}{a^2+b^2+c^2-3}=\frac{9}{1-3}=\frac{-9}{2}\left(Q.E.D\right)\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

22 tháng 6 2020

Đợi t qua thi nhé full.

17 tháng 11 2017

chịu??? tớ chưa học đến?

10 tháng 4 2019

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà 

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)