Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Xét hiệu \(\frac{a^3}{b}-(a^2+ab-b^2)=(\frac{a^3}{b}-a^2)-(ab-b^2)\)
\(=\frac{a^3-a^2b}{b}-b(a-b)=\frac{a^2(a-b)}{b}-b(a-b)=(a-b)\left(\frac{a^2}{b}-b\right)\)
\(=(a-b).\frac{a^2-b^2}{b}=\frac{(a-b)^2(a+b)}{b}\geq 0, \forall a,b>0\)
Do đó \(\frac{a^3}{b}\geq a^2+ab-b^2\) (đpcm)
Dấu "=" xảy ra khi $a=b$
b)
Áp dụng BĐT Cauchy cho các số dương:
\(\frac{a^3}{b}+ab\geq 2a^2\)
\(\frac{b^3}{c}+bc\geq 2b^2\)
\(\frac{c^3}{a}+ac\geq 2c^2\)
Cộng theo vế:
\(\Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\)
Mà cũng theo BĐT Cauchy:
\(a^2+b^2+c^2=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\geq \frac{2ab}{2}+\frac{2bc}{2}+\frac{2ca}{2}=ab+bc+ca\)
\( \Rightarrow \frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\geq 2(a^2+b^2+c^2)-(ab+bc+ac)\geq 2(ab+bc+ac)-(ab+bc+ac)=ab+bc+ac\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Áp dụng bdt AM-GM
\(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\)\(\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)
CMTT, ta được
\(\frac{b}{c^3+bc}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right);\frac{c}{a^3+ac}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\)
Cộng ba bdt
VT \(\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Quy bài toán về cm
\(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)+\left(\frac{1}{b}+b\right)+\left(\frac{1}{c}+c\right)\ge6\) ( vì a+b+c=3)
Dễ dàng chứng minh bđt cuối bằng cách áp dụng AM-GM trực tiếp
ĐPCM
\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)
Ta cần chứng minh: \(x^2+y^2+z^2\ge3\)
Thật vậy:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
Cộng vế với vế:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)
\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)
Dấu "=" xảy ra khi \(a=b=c\)
a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)
\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)
\(\RightarrowĐPCM\)
b/Tương tự ở câu a, ta cũng có:
\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)
Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)
\(\frac{4}{a^2+b^2+c^2}+\frac{2021}{ab+bc+ac}=\frac{4}{a^2+b^2+c^2}+\frac{4}{ab+bc+ac}+\frac{4}{ab+bc+ac}+\frac{2013}{ab+bc+ac}\)
\(=4\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\right)+\frac{2013}{ab+bc+ac}\)
\(\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{ab+bc+ac}\ge\frac{36}{\left(a+b+c\right)^2}+\frac{2013}{\frac{\left(a+b+c\right)^2}{3}}\ge4+671=675\)
\("="\Leftrightarrow a=b=c=1\)
a) Đơn giản, tự chứng minh
b) Cách 1: Áp dụng BĐT câu a: \(VT\ge\left(a^2+ab-b^2\right)+\left(b^2+bc-c^2\right)+\left(c^2+ca-a^2\right)=ab+bc+ca=VP\)(đpcm)
Cách 2:
Ta chứng minh BĐT chặt hơn: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\) (vì \(a^2+b^2+c^2\ge ab+bc+ca\))
Giả sử \(b=min\left\{a,b,c\right\}\).Bằng phương pháp B-W (Buffalo way) ta phân tích được:
\(VT-VP=\frac{\left(4a^2c+4abc-b^3+3b^2c-bc^2\right)\left(a-b\right)^2+b\left(b^2+bc+c^2\right)\left(a+b-2c\right)^2}{4abc}\ge0\)
P/s: Cách 2 tuy dài nhưng rất hay vì đây là phân tích bằng tay (không cần dùng phần mềm)!