Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^2(b+c)=b^2(b+c)$
$\Leftrightarrow a^2(b+c)-b^2(b+c)=0$
$\Leftrightarrow (a^2-b^2)(b+c)=0$
$\Leftrightarrow (a-b)(a+b)(b+c)=0$
Vì $a,b,c$ đôi 1 khác nhau nên $a-b\neq 0$
$\Rightarrow (a+b)(b+c)=0$
Mà $b+c\neq 0$ (do nếu $b+c=0$ thì $a^2(b+c)=0$ (trái với đề))
$\Rightarrow a+b=0$
$\Rightarrow H=c^2(a+b)=0$
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\left(\frac{a}{c}\right)^{2021}=\left(\frac{b}{d}\right)^{2021}=\left(\frac{a-b}{c-d}\right)^{2021}\)
=> \(\frac{a^{2021}}{c^{2021}}=\frac{b^{2021}}{d^{2021}}=\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)
=>\(\left(\frac{a-b}{c-d}\right)^{2021}=\frac{a^{2021}+b^{2021}}{c^{2021}+d^{2021}}\)(đpcm)