K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

a.(-2/3+3/7) : 4/5 + (-1/3+4/7) : 4/5

= [(-2/3 + 3/7) + (-1/3 + 4/7)] : 4/5

= [(-2/3 + (-1/3) + (3/7 + 4/7)] : 4/5

= [-1 + 1] : 4/5

= 0 : 4/5

= 0   

6 tháng 9 2016

a) \(\left(\frac{-2}{3}+\frac{3}{7}\right).\frac{5}{4}+\left(\frac{-1}{3}+\frac{4}{7}\right).\frac{5}{4}\)

=\(\left(\frac{-2}{3}+\frac{-1}{3}+\frac{3}{7}+\frac{4}{7}\right).\frac{5}{4}\)

\(0.\frac{5}{4}=0\)

b) \(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)\)

=\(\frac{5}{9}:\frac{-81}{110}=\frac{-550}{729}\)

27 tháng 2 2020

Ta có : \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

=> (a + 3)(b - 4) = (a - 3)(b + 4)

=> ab - 4a + 3b - 12 = ab + 4a - 3b - 12

=> 8a = 6b 

=> 4a = 3b

=> \(\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\end{cases}}\)

Khi đó D = \(\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}=\frac{3^3.k^3+3^3}{4^3.k^3+4^3}=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)

20 tháng 8 2016

Có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad=bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Tương tự: \(ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(dpcm\right)\)

8 tháng 10 2017

Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\)    ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\)    ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)

Sửa đề \(D=\frac{a^3+3^3}{b^3+4^3}\)biết \(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)

\(\Leftrightarrow\left(a+3\right)\left(b-4\right)=\left(a-3\right)\left(b+4\right)\)

\(\Leftrightarrow ab-4a+3b-12=ab+4a-3b-12\)

\(\Leftrightarrow8a=6b\)

\(\Leftrightarrow\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)\(\Rightarrow a=3k,b=4k\)

\(\Rightarrow D=\frac{a^3+3^3}{b^3+4^3}=\frac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)

\(=\frac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\frac{3^3}{4^3}=\frac{27}{64}\)

15 tháng 3 2022

TL: 
8 nhé 

HNJK