Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)
\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)
Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)
VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)
Dấu''='' xra\(\Leftrightarrow\)a=b=c
\(3=a+b+ab\le a+b+\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)
\(\Leftrightarrow\left(a+b-2\right)\left(a+b+6\right)\ge0\Rightarrow a+b\ge2\)
Đặt vế trái của BĐT là P
\(P=\frac{4a\left(a+1\right)+4b\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}+2ab-\sqrt{7-3\left(3-a-b\right)}\)
\(P=\frac{4\left(a^2+b^2+a+b\right)}{ab+a+b+1}+2ab-\sqrt{3\left(a+b\right)-2}\)
\(P=a^2+b^2+a+b+2ab-\sqrt{3\left(a+b\right)-2}\)
\(P=\left(a+b\right)^2+a+b-\sqrt{3\left(a+b\right)-2}\)
Đặt \(\sqrt{3\left(a+b\right)-2}=x\Rightarrow\left\{{}\begin{matrix}x\ge2\\a+b=\frac{x^2+2}{3}\end{matrix}\right.\)
\(\Rightarrow P=\left(\frac{x^2+2}{3}\right)^2+\frac{x^2+2}{3}-x=\frac{x^4+7x^2-9x+10}{9}\)
\(P=\frac{x^4+7x^2-9x-26+36}{9}=\frac{\left(x-2\right)\left(x^3+2x^2+11x+13\right)}{9}+4\ge4\) ; \(\forall x\ge2\) (đpcm)
Dấu "=" xảy ra khi \(x=2\) hay \(a=b=1\)
\(VT=\sqrt{\left(a+\dfrac{5b}{2}\right)^2+\dfrac{15b^2}{4}}+\sqrt{\left(b+\dfrac{5c}{2}\right)^2+\dfrac{15c^2}{4}}+\sqrt{\left(c+\dfrac{5a}{2}\right)^2+\dfrac{15a^2}{4}}\)
\(\Rightarrow VT\ge\sqrt{\left(a+\dfrac{5b}{2}+b+\dfrac{5c}{2}+c+\dfrac{5a}{2}\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\sqrt{\dfrac{49}{4}\left(a+b+c\right)^2+\dfrac{15}{4}\left(a+b+c\right)^2}=4\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)
b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
tk chó tuấn
fan FA chó cái cục shit nhà bạn :))
\(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)
Áp dụng BĐT AM-GM cho 2 số không âm:
\(VT\ge2\sqrt{\left|a-b\right|\cdot\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)
Dấu "=" tự xét.