Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim so chinh phuong gom 4 chu so biet rang so gom 2 chu so dau lon hon so gom 2 chu so sau 1 don vi.
Gọi 2n+1=a2 ; 3n+1=b2 (a,b thuộc N, \(10\le n\le99\))
\(10\le n\le99\Rightarrow21\le2n+1\le199\)
\(\Rightarrow21\le a^2\le199\)
Mà 2n+1 lẻ
\(\Rightarrow2n+1=a^2\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow n\in\left\{25;49;81;121;169\right\}\)
\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\)
Mà 3n+1 là số chính phương
\(\Rightarrow3n+1=121\Rightarrow n=40\)
Vậy n=40
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\right)\)
\(2A=1-\frac{1}{3^n}\)
\(A=\frac{1-\frac{1}{3^n}}{2}\)
b) Gọi số cần tìm là ab (a khác 0; a,b là các chữ số)
Ta có: ab.75 = x2 \(\left(x\ne0\right)\)
=> ab.3.52 = x2
Để ab.75 là 1 số chính phương thì ab = 3.k2 \(\left(k\ne0\right)\)
Lại có: 9 < ab < 100 => 9 < 3.k2 < 100
=> 3 < k2 < 34
Mà k2 là số chính phương nên \(k^2\in\left\{4;9;16;25\right\}\)
\(\Rightarrow ab\in\left\{12;27;48;75\right\}\)
Vậy số cần tim là 12; 27; 48; 75
c) Đặt \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\)
\(3B=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(3B-B=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(6B=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)
\(6B-2B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)
\(4B=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{101}{3^{101}}\)
\(4B=3-\frac{205}{3^{101}}< 3\)
\(\Rightarrow B< \frac{3}{4}\)
a, 3A=3^2+3^3+....+3^2017
2A=3A-A=(3^2+3^3+....+3^2017)-(3+3^2+3^3+....+3^2016) = 3^2017-3
=> A=(3^2017-3)/2
b, Xét 3^2017 = 3.3^2016 = 3.(3^4)^504 = 3.81^504 = 3 . ....1 = ....3
=> A = (....3-3)/2 = ....0/2
=> A có tận cùng là 5 hoặc 0
c, Dễ thấy A chia hết cho số 3 nguyên tố
Vì 3^2;3^3;....;3^2016 đều chia hết cho 3^2=9
mà 3 ko chia hết cho 9 => A ko chia hết cho 9
=> A chia hết cho 3 nguyên tố nhưng A ko chia hết cho A^2
=> A ko phải là số chính phương
k mk nha