K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)\)

\(=\left(\sqrt{a^2+2011}\right)^2-a^2\)

\(=a^2+2011-a^2=2011\)

Nên : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}-a\right)=2011\)

Mà theo bài ta có : \(\left(\sqrt{a^2+2011}+a\right).\left(\sqrt{a^2+2011}+b\right)=2011\)

Nên : \(\sqrt{a^2+2011}+b=\sqrt{a^2+2011}-a\) ( đpcm )

28 tháng 1 2016

kho qua

28 tháng 1 2016

quá khó là đằng khác

28 tháng 12 2019

\(\left(a-\sqrt{2011}\right)\left(b+\sqrt{2011}\right)=14\)

\(\Leftrightarrow ab+\sqrt{2011}\left(a-b\right)=2025\)

Có: a,b nguyên => a-b nguyên

=> VP=VT <=> \(\sqrt{2011}\left(a-b\right)\)nguyên

=> a-b=0 <=> a=b

=> pt <=> a^2=2025

Làm nốt nhé. 

20 tháng 10 2019

Nhân 2 vế với \(\left(x-\sqrt{2011+x^2}\right)\) ta được:

\(\left(x^2-2011-x^2\right)\left(y+\sqrt{2011+y^2}\right)=2001\left(x-\sqrt{2011+x^2}\right)\)

\(\Leftrightarrow-2011\left(y+\sqrt{2011+y^2}\right)=2011\left(x-\sqrt{2011+x^2}\right)\)

\(\Leftrightarrow y+\sqrt{2011+y^2}=\sqrt{2011+x^2}-x\)(1)

Tương tự nhân 2 vế với \(\left(y-\sqrt{2011+y^2}\right)\) ta được:

\(x+\sqrt{2011+x^2}=\sqrt{2011+y^2}-y\)(2)

Cộng (1) và (2) vế theo vế ta được:

\(x+y=-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\)

\(\Leftrightarrow x=-y\)

\(\Rightarrow T=-y^{2011}+y^{2011}=0\)

22 tháng 10 2019

@Nk>↑@ nhân liên hợp

loading...  loading...  

11 tháng 4 2023

bạn chụp lại đc kh ạ? khó nhìn quá ạ

 

28 tháng 11 2019

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

28 tháng 11 2019

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)

NV
14 tháng 5 2020

Nhân 2 vế giả thiết với \(\sqrt{x^2+2011}-x\) và rút gọn ta được:

\(y+\sqrt{y^2+2011}=\sqrt{x^2+2011}-x\) (1)

Nhân 2 vế giả thiết với \(\sqrt{y^2+2011}-y\) và rút gọn ta được:

\(x+\sqrt{x^2+2011}=\sqrt{y^2+2011}-y\) (2)

Cộng vế với vế (1) và (2):

\(x+y+\sqrt{x^2+2011}+\sqrt{y^2+2011}=\sqrt{x^2+2011}+\sqrt{y^2+2011}-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

22 tháng 11 2021

\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)

\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)