Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Với a>b=>a/b>1
Với a=b=>a/b=1
Với a<b=>a/b<1
b) Với a/b dương:
a/b<a+1/b+1(công thức có thể tự chứng minh bằng quy đồng)
Với a/b âm:
a/b>a+1/b+1.
Chúc em học tốt^^
\(\dfrac{a}{b}=\dfrac{a\left(b+2021\right)}{b\left(b+2021\right)}=\dfrac{ab+2021a}{b\left(b+2021\right)}\\ \dfrac{a+2021}{b+2021}=\dfrac{ab+2021b}{b\left(b+2021\right)}\)
Vì \(b>0\Rightarrow b\left(b+2021\right)>0\)
Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2021}{b+2021}\)
Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2021}{b+2021}=1\)
Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2021}{b+2021}\)
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\)
\(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)
*TH1: a=b
=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)
*TH2: a<b
=>ab+2001a<ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH3:a>b
=>ab+2001a>ab+2001b
=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)
=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=> \(\frac{a}{b}\frac{a+2001}{b+2001}\)
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.
So sánh ab + 2001a với ab + 2001b
- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
- Nếu a = b => hai phân số bằng nhau = 1
- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}
Ta xét hiệu \(\frac{a}{b}-\frac{a+1}{b+1}=\frac{a\left(b+1\right)}{b\left(b+1\right)}-\frac{b\left(a+1\right)}{b\left(b+1\right)}=\frac{ab+a-ba-b}{b\left(b+1\right)}=\frac{a-b}{b\left(b+1\right)}\)
Do b(b+1) > 0 nên ta xét các trường hợp :
\(a< b\Rightarrow a-b< 0\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
\(a=b\Rightarrow a-b=0\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(a< b\Rightarrow a-b>0\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\)
Chúc em học tốt :))