K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bđt Bunhiacopski ta có

\(A=3\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge3.\frac{\left(a+b\right)^2}{2+a+b}=\frac{3}{3}=1.\)

Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)

30 tháng 4 2019

ko ph đây là svac à

19 tháng 7 2016

a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)

=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)

Dấu "=" xảy ra khi: a=b

Vậy GTNN của N là 9/2 tại a=b

b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)

<=>(a+b)2-2ab\(\ge\frac{9}{2}\)

<=>\(9-2ab\ge\frac{9}{2}\)

<=>\(2ab\le\frac{9}{2}\)

<=>\(ab\ge\frac{9}{4}\)

<=>\(ab+2\le\frac{17}{4}\)

Dấu "=" xảy ra khi a=b

Vậy GTLN của P là 17/4 tại a=b

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

25 tháng 3 2020

a - b = 1 => a = 1 + b 

=> \(S=\frac{\left(b+1\right)^2+b^2}{b}=\frac{2b^2+2b+1}{b}=2b+\frac{1}{b}+2\ge2\sqrt{2b.\frac{1}{b}}+2=2\sqrt{2}+2\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}2b=\frac{1}{b}\\a=1+b\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt{2}}\\a=1+\frac{1}{\sqrt{2}}\end{cases}}\)

Vậy GTNN S = \(2\sqrt{2}+2\)

18 tháng 2 2021

Có: \(1=\left(a+b\right)^2\le\left(a^2+b^2\right)\left(1+1\right)=2\left(a^2+b^2\right)\)

Theo bđt Bunhiacopxki có: \(\left(\text{ax}+by\right)\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu '=' xảy ra khi ay=bx

\(\Rightarrow\left(a^2+b^2\right)\ge\frac{1}{2}\Rightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\)

Dấu '=' xảy ra khi a=b=1/2

Khi đó : \(P=1:\frac{1}{4}+40.\frac{1}{8}=9\)

18 tháng 2 2021

một cách khác :))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^4+b^4=\frac{a^4}{1}+\frac{b^4}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Tiếp tục áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)(2)

Từ (1) và (2) => \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\)(3)

Theo bất đẳng thức AM-GM ta có \(ab\le\left(\frac{a+b}{2}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)=> \(\frac{1}{ab}\ge4\)(4)

Từ (3) và (4) => \(P=\frac{1}{ab}\cdot40\left(a^4+b^4\right)\ge4\cdot40\cdot\frac{1}{8}=20\)

Đẳng thức xảy ra <=> a = b = 1/2

Vậy MinP = 20

DD
25 tháng 7 2021

Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).

Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).

Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được

\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)

do đó \(a-b\le1\).

Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)

\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\)

Vậy \(maxP=1010.1009\).