Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 7^2012 = 7^4.503 = (7^4)^503 = (...1)^503 = ....1 ( số ...1 có gạch ngang trên đầu nha ) => 7^2012^2014 = (...1)^2014 = ...1
3^92 = 3^4.23 = (3^4)^23 = (....1)^23 = ....1 => 3^92^94 = (....1)^2014 = ...1
=> B = 1/2 . (....1 - ....1 ) = 1/2 . (....0)
=> B có tận cùng là 5 hoặc 0 => B chia hết cho 5 (ĐPCM)
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1
7 chia hết cho (2-x) nên 2-x thuộc tập hợp ước của 7
nên 2-x=1 hoặc 2-x= 7
nen x=1 hoặc x=-5
do x là số tự nhiên nên x=1
đề sai ùi bạn
tại mình thấy cô ghi vậy á