K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

b) Ta có ƯCLN(S;M)=2

Và ƯCLN(a;b)=ƯCLN(S;M)

Suy ra ƯCLN(a;b)=2

Ta lại có a.b=ƯCLN(a;b).BCNN(a;b)=2.84=168

Ta có hệ phương trình

\(\left\{{}\begin{matrix}a+b=26\\ab=168\left(1\right)\end{matrix}\right.\)

Ta có a+b=16\(\Leftrightarrow b=26-a\)

Thay b=26-a vào (1)\(\Leftrightarrow a\left(26-a\right)=168\Leftrightarrow26a-a^2=168\Leftrightarrow a^2-26a+168=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=12\\a=14\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}b=14\\b=12\end{matrix}\right.\)

Vậy (a,b)={(12;14);(14;12)}

11 tháng 10 2021

b, a=7, b=19

11 tháng 10 2021
Ê các cậu bao nhiêu đểm rồi tớ được 9 điểm môn Tiếng Việt còn toán tớ được 9 điểm các môn học này chào các bạn nhé tớ chỉ hỏi các cậu bao nhiêu điểm thôi mà nhé chào các bạn nhé
24 tháng 11 2018

b) Ta có ƯCLN(S;M)=2

Và ƯCLN(a;b)=ƯCLN(S;M)

Suy ra ƯCLN(a;b)=2

Ta lại có a.b=ƯCLN(a;b).BCNN(a;b)=2.84=168

Ta có hệ phương trình

\(\left\{{}\begin{matrix}a+b=26\\ab=168\left(1\right)\end{matrix}\right.\)

Ta có a+b=16\(\Leftrightarrow b=26-a\)

Thay b=26-a vào (1)\(\Leftrightarrow a\left(26-a\right)=168\Leftrightarrow26a-a^2=168\Leftrightarrow a^2-26a+168=0\Leftrightarrow\)\(\left[{}\begin{matrix}a=12\\a=14\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}b=14\\b=12\end{matrix}\right.\)

Vậy (a,b)={(12;14);(14;12)}

24 tháng 11 2018

Bạn phân tích S và M thành các thừa số nguyên tố

Xong rồi dùng các bước tìm ƯCLN của hai số mà bạn đã học

NV
15 tháng 4 2022

\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)

\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)

Ta dễ dàng chứng minh được:

\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)

\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)

Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)

Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)

\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\) 

\(\Rightarrow b^2=4m\)

\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)

Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)

\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)

Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương

NV
16 tháng 4 2022

Mải làm quên mất, cứ nghĩ là bài yêu cầu tìm nghiệm nguyên của pt

Nếu chỉ cần chứng minh A nguyên dương thì ko cần 3 dòng cuối nữa, đến đoạn \(m=k^2\) là số chính phương là xong rồi