Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d1:x+y-2=0\Leftrightarrow y=-x+2\Rightarrow B\left(a;-b+2\right)\)
\(d2:x+y-8=0\Leftrightarrow y=-x+8\Rightarrow C\left(b;-b+8\right)\)
\(\Rightarrow AB=\sqrt{\left(a-2\right)^2+\left(-a+2-2\right)^2}\)
\(\Rightarrow AC=\sqrt{\left(b-2\right)^2+\left(-b+8-2\right)^2}\)
\(\Delta ABC\) \(vuông\) \(cân\) \(tạiA\Rightarrow\left\{{}\begin{matrix}AB^2=AC^2\\\overrightarrow{AB}.\overrightarrow{AC}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(-a\right)^2=\left(b-2\right)^2+\left(-b+8-2\right)^2\\\left(a-2\right)\left(b-2\right)+\left(-a\right)\left(-b+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}B\left(-1;3\right)\\C\left(3;5\right)\end{matrix}\right.\\\left\{{}\begin{matrix}B\left(3;-1\right)\\C\left(5;3\right)\end{matrix}\right.\end{matrix}\right.\)
Tam giác ABC vuông cân tại đâu nhỉ? Tại A? Tại B? Tại C?
Nếu đề ko nêu rõ yêu cầu thì phải giải 3 trường hợp, rất mệt
(3):
a: =>căn 2x-3=x-3
=>x>=3 và x^2-6x+9=2x-3
=>x>=3 và x^2-8x+12=0
=>x=6
b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1
=>x>=-1 và x^2+(m-2)x-4=0
=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
Câu 1:
\(a^2+b^2=1\Rightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\Rightarrow a+b\le\sqrt{2}\)
\(P=c^2-2ac+a^2+d^2-2bd+b^2-\left(a^2+b^2\right)\)
\(P=\left(c-a\right)^2+\left(d-b\right)^2-1\ge\frac{1}{2}\left(c-a+d-b\right)^2-1\)
\(P\ge\frac{1}{2}\left(6-\sqrt{2}\right)^2-1=18-6\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=\frac{1}{\sqrt{2}}\\c=d=3\end{matrix}\right.\)
Câu 2:
Gọi \(B\in d_1\Rightarrow B\left(a;2-a\right)\Rightarrow\overrightarrow{AB}=\left(a-2;-a\right)\)
\(C\in d_2\Rightarrow C\left(c;8-c\right)\Rightarrow\overrightarrow{AC}=\left(c-2;6-c\right)\)
Để tam giác ABC vuông cân tại A thì:
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{AC}=0\\AB^2=AC^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)\left(c-2\right)-a\left(6-c\right)=0\\\left(a-2\right)^2+a^2=\left(c-2\right)^2+\left(6-c\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ac-4a-c+2=0\\a^2-2a=c^2-8c+18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(c-4\right)=2\\\left(a-1\right)^2=\left(c-4\right)^2+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=3;c=5\\a=-1;c=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}B\left(3;-1\right);C\left(5;3\right)\\B\left(-1;3\right);C\left(3;5\right)\end{matrix}\right.\)