Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B=(a-b+c)+(-a+b-c)
= (a+(-a))+((-b)+b)+(c+(-c)
= 0+0+0
= 0
vậy A và B là hai số đối nhau.
Nói rõ nha:
Ta xét: P + Q = -a+b-c+a-b+c=(-a +a ) + (-b+b)+ ( -c +c) = 0+ 0+ 0 =0
Vậy P và Q là 2 số đối nhau!
Mk chỉ nói qua thui nha bn thử cộng P và Q lại sẽ ra 0 nên suy ra P=Q
ab-ac+bc-c2=-1
=> a.(b-c)+c.(b-c)=-1
=> (b-c).(a+c)=-1
=> (b-c).(a+c)=-1.1=1.(-1)
+) b-c=-1; a+c=1
=> (b-c)+(a+c) = b-c+a+c = a + b = -1 + 1 = 0
=> a và b đối nhau
+) b-c=1; a+c=-1
=> (b-c)+(a+c) = b-c+a+c = a + b = 1 + (-1) = 0
=> a và b đối nhau Vậy 2 số a và b đối nhau.
Chứng minh rằng:(a,b thuộc Z)
a/ a-b và (-a)+b là 2 số đối nhau
b/ -(a-b+c)=(-a)+b-c
c/ a+(-b)+(-a)+b=0
a, (-a) + b = b - a
Mà a - b và b - a là 2 số đối nhau
=> (-a) + b và a - b là 2 số đối nhau (đpcm)
b, -(a-b+c) = -a+b-c
(-a)+b-c = -a+b-c
=> -(a-b+c) = (-a)+b-c (Vì cùng bằng -a+b-c)
=> Đpcm
c, a + (-b) + (-a) + b
= a - b - a + b
= a - a + b - b
= 0 (Đpcm)
Ta có :
ab - ac + bc - c2 = -1
\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1
\(\Leftrightarrow\)( a + c ) . ( b - c ) = -1
\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + b )
\(\Leftrightarrow\)b - c = -a - c
\(\Leftrightarrow\)b = -a
Vậy a và b là hai số đối nhau
Từ a+b=c +d suy ra d = a+b-c
Vì tích ab là số liền sau của tích cd nên ab-cd = 1
\(\Leftrightarrow\)ab - c.(a+b-c)=1
\(\Leftrightarrow\)ab - ac - bc + c2 = 1
\(\Leftrightarrow\)a.(b-c)-c.(b-c)=1
\(\Leftrightarrow\)(b-c).(a-c)=1
\(\Rightarrow\)a-c=b-c (vì cùng bằng 1 hoặc -1 )
\(\Rightarrow\)a=b
mình nha
A = a - b + c
B = -a + b - c
Ta thấy a và -a là hai số đối nhau ( 1 )
-b và b là hai số đối nhau ( 2 )
c và -c là hai số đối nhau ( 3 )
Từ ( 1 ), ( 2 ), ( 3 ) \(\Rightarrow\) A và B là hai số đối nhau ( ĐPCM )
A+B=(a-b+c)+(-a+b-c)
= (a+(-a))+((-b)+b)+(c+(-c)
= 0+0+0
= 0
Vậy hai số A và B là hai số đối nhau (ĐPCM)