Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{6}{14}+\dfrac{7}{14}\right)^2=\left(\dfrac{13}{14}\right)^2=\dfrac{169}{196}\)
b) \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{9}{12}-\dfrac{10}{12}\right)^2=\left(-\dfrac{1}{12}\right)^2=\dfrac{1}{144}\)
c) \(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot2^8}{5^{10}\cdot2^{10}}=\dfrac{1}{100}\)
d) \(\left(\dfrac{-10^5}{3}\right)\cdot\dfrac{-6^4}{5}=\dfrac{5^5\cdot3^4\cdot2^9}{3\cdot5}=5^4\cdot3^3\cdot2^9=2880000\)
e) \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
f) \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^3=2:\left(\dfrac{-1}{6}\right)^3=2:\dfrac{-1}{216}=-432\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{99}{202}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\left(đpcm\right)\)
A= 1/4 +1/3^2 +1/4^2 +.....+ 1/100^2
< 1/4 + 1/2.3 + 1/3.4 +.....+1/99.100
=1/4 + 1/2-1/3+1/3-1/4+......+1/99-1/100
=1/4 +1/2 - 1/100 < 1/4+1/2 = 3/4
=> ĐPCM
a) \(-1\frac{5}{7}.15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)
\(=1\frac{5}{7}.\left(-15\right)+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{70}{105}-\frac{84}{105}+\frac{15}{105}\right)\)
\(=\left(-15\right)\left(1+\frac{5}{7}+\frac{2}{7}\right)+\left(-105\right).\frac{1}{105}\)
\(=-30-1=-31\)
b) \(\frac{2}{3}+\frac{3}{4}.\left(-\frac{4}{9}\right)\)
= \(=\frac{2}{3}+\frac{3.\left(-4\right)}{4.9}=\frac{2}{3}+\frac{-1}{3}=\frac{1}{3}\)
c) \(\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)
\(=\left(\frac{3}{4}-\frac{1}{5}\right).\left(\frac{2}{5}-\frac{4}{5}\right)=\frac{11}{20}.\left(\frac{-2}{5}\right)=\frac{11.\left(-1\right).2}{2.10.5}=\frac{-11}{50}\)
\(A=4+4^2+4^3+...+4^{120}\\ =\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{119}+4^{120}\right)\\ =4\left(1+4\right)+4^3\left(1+4\right)+...+4^{119}\left(1+4\right)\\ =\left(1+4\right)\left(4+4^3+...+4^{119}\right)=5\left(4+4^3+...+4^{119}\right)⋮5\)
\(A=4+4^2+4^3+...+4^{120}\\ =\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{118}+4^{119}+4^{120}\right)\\ =4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{118}\left(1+4+4^2\right)\\ =\left(1+4+4^2\right)\left(4+4^4+...+4^{118}\right)=21\left(4+4^3+...+4^{119}\right)⋮21\)
Vì 21 và 5 là hai số nguyên tố cùng nhau mà \(A⋮5;A⋮21\Rightarrow A⋮5\cdot21\Leftrightarrow A⋮105\)
\(A=4+4^2+4^3+...+4^{120}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{119}+4^{20}\right)\)
\(A=1\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{118}\left(4+4^2\right)\)
\(A=\left(1+4^2+4^{118}\right)\left(4+4^2\right)\)
\(A=20\left(1+4^2+4^{118}\right)\)
\(A=5.4.\left(1+4^2+4^{118}\right)⋮5\rightarrowđpcm\)
Tương tự