Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay x = -2 ; y = 3 ta được
\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)
b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)
Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)
\(A=\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}=\dfrac{100}{300}\)
\(B=\dfrac{25}{11}\cdot\dfrac{13}{12}\cdot\dfrac{-11}{5}=\dfrac{-65}{12}=\dfrac{-1625}{300}\)
\(C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\cdot\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\cdot\dfrac{-2}{5}=\dfrac{-22}{100}=\dfrac{-11}{50}=\dfrac{-66}{300}\)
Vì -1625<-66<100
nên B<C<A
\(\text{Ta có: |a| = }\frac{1}{3}\Leftrightarrow a=\orbr{\begin{cases}\frac{1}{3}\\-\frac{1}{3}\end{cases}}\)
\(\text{Ta có: |b| = }0,25\Leftrightarrow b=\orbr{\begin{cases}0,25\\-0.25\end{cases}}\)
Thay a. b vào ta có:
A =
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
a) Thay x = 3,y = 4 vào biểu thức P = 2x + 3y - 1 ta có :
P = 2x + 3y - 1 = 2.3 + 3.4 - 1 = 6 + 12 - 1 = 17
Vậy P = 17
b) Thay x = -3,y = -1 vào biểu thức P = 2x + 3y - 1 ta có :
P = 2x + 3y - 1 = 2(-3) + 3(-1) - 1 = -10
Vậy P = -10
c) x = y = -1/2 thì :
P = 2x + 3y - 1 = \(2\cdot\left(-\frac{1}{2}\right)+3\cdot\left(-\frac{1}{2}\right)-1=5\left(-\frac{1}{2}\right)-1=-\frac{5}{2}-\frac{2}{2}=-\frac{7}{2}\)
Vậy P = -7/2