Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì số A sẽ tăng thêm 1111 đơn vị hay A + 1111 = B (1).
Đặt A = a2 và B = b2 với a,b thuộc N*.
Từ (1) => a2 + 1111 = b2 => b2 - a2 = 1111 => (a + b)(b - a) = 1111. (2)
Vì a, b thuộc N* nên a + b > b - a. (3) Ta có : 1111 = 11.101 (4)
Từ (2), (3) và (4) => a + b = 101 và b - a = 11. => a = 45 và b = 56.
=> A = 2025 và B = 3136.
Một số chính phương không thể có tận cùng bằng 14 vì nếu số đó có tận cùng là 14 thì số đó chia hết cho 2 mà không chia hết cho 4, không phải số chính phương
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Giải
Nhận xét : các số tự nhiên có số mũ dạng 4k + 1 thì luôn có giá trị bằng chính nó
Từ nhận xét trên ta xét tổng các chữ tận cùng của tổng các lũy thừa trên
Ta có tổng sau có chữ số tận cùng bằng tổng ban đầu
1 + 2 + 3 + 4 + 5 + 6 + ... + 2019 = 2019.(2019+1)/2
=2019.2020/2
Vì 2019.2020 có chữ số tận cùng bằng 0 nên 2019.2020/2 phải có chữ số tận cùng bằng 5
Vậy chữ số tận cùng của 1^5 + 2^5 + 3^5 + ... + 2019^5 là 5
goi thương cuối cung là x , số cần tìm là ab5
thương tìm dc cộng 9 thì chia hết cho 9 nên thương dó có dạng 9x-9
thương tìm dược cộng 8 thì chia hết cho 8 nên thương có dang \(\left(9x-9\right).8-8\)
số dó cong thêm 7 thì dc 1 số chia hết cho 7 nên \(\left[\left(9x-9\right).8-8\right].7-7=\)ab5
suy ra 504x-567=ab5 dk x<=3)
nen 504x có chữ só tận cùng =2 suy ra x= 3
nên số cần tìm 945
nguồn bạn cùng lớp
Gọi số cần tìm là abcd
Theo bài ra ta có: a+b+c+d=26 và a=c ; b=d
Mà tích các chữ số là số tròn chục => có ít nhất một số là số 5 và số chẵn
Vì số đó là số lẻ => b=d=5
=>a+5+c+5=26 => a+c=16 Mà a=c
=>a=c=8
Vậy số cần tìm là 8585
Bg
Ta có: A = 3 + 32 + 33 +...+ 32016
=> 3A = 3.(3 + 32 + 33 +...+ 32016)
=> 3A = 32 + 33 + 34 +...+ 32017
=> 3A - A = (32 + 33 + 34 +...+ 32017) - (3 + 32 + 33 +...+ 32016)
=> 2A = 32017 - 3
=> A = (32017 - 3) ÷ 2
a) => A = (34.504 + 1 - 3) ÷ 2
Dạng 34k + 1 (với k thuộc N) = (...3)
=> A = [(...3) - 3] ÷ 2
=> A = (...0) ÷ 2
=> A = (...5) hay A = (...0)
Câu b chưa làm được xin lỗi bạn nhiều!
À, nghĩ ra câu b rồi:
b) Ta có A chia hết cho 3 => nếu A là số chính phương thì A chia hết cho 32 => A chia hết cho 9
A = (32017 - 3) ÷ 2
=> A = 3.(32016 - 1) ÷ 2
=> A = 3 ÷ 2.(32016 - 1)
=> A = 1,5.(32016 - 1)
=> A = 1,5.(32.1008 - 1)
=> A = 1,5.(91008 - 1)
Vì 91008 chia hết cho 9 mà 1 không chia hết cho 9
=> 91008 - 1 không chia hết cho 9
Và 1,5 không chia hết cho 9
=> 1,5.(91008 - 1) không chia hết cho 9
=> A = 3 + 32 + 33 +...+ 32016 không chia hết cho 9
=> A không phải là số chính phương.