Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)
B = 1.2.3.....2012(1+1/2+1/3+...+1/2012)
Ta thấy từ 1 đến 2012 sẽ có hai số là 3 và 1342, mà 3x1342=4026 chia hết cho 2013
=> B = 1.2.(3.1342).5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
B = 1.2.4026.5...1341.1343.....2012.(1+1/2+1/3...+1/2012)
=> B chia hết cho 2013
Bài toán này cho thêm tổng một dãy phân số trong ngoặc chỉ để mình hoang mang thôi bạn nhé =))
Chúc bạn học tốt, nhớ tích câu trả lời của mình nhé !
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
Ta có:
\(A=3^{2000}+...+3^{2012}+3^{2013}⋮3\left(1\right)\)
Lại có:
\(A=3^{2000}+3^{2001}...+3^{2012}+3^{2013}\)
\(\Rightarrow A=\left(3^{2000}+3^{2001}\right)+...+\left(3^{2012}+3^{2013}\right)\)
\(\Rightarrow A=3^{2000}\left(1+3\right)+...+3^{2012}\left(1+3\right)\)
\(\Rightarrow A=3^{2000}.4+...+3^{2012}.4⋮4\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow A=3^{2000}+...+3^{2012}+3^{2013}⋮12\left(đpcm\right)\)