Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\dfrac{a^2}{a\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{b^2}{b\left(\sqrt{c}+\sqrt{a}\right)}+\dfrac{c^2}{c\left(\sqrt{a}+\sqrt{b}\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(\sqrt{b}+\sqrt{c}\right)+b\left(\sqrt{c}+\sqrt{a}\right)+c\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(b+c\right)+\sqrt{b}\left(c+a\right)+\sqrt{c}\left(a+b\right)}\)
Mặt khác:
\(\sqrt{a}\left(b+c\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a.\left(b+c\right)\left(b+c\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{2a+2b+2c}{3}\right)^3}=\dfrac{2\sqrt{3}}{9}\)
\(\Rightarrow S\ge\dfrac{1}{3.\dfrac{2\sqrt{3}}{9}}=\dfrac{\sqrt{3}}{2}\)
\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)
\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
Áp dụng BĐT cosi, ta có
\(\sqrt{3a+1}=\dfrac{1}{2}\sqrt{4\left(3a+1\right)}\le\dfrac{1}{2}.\dfrac{4+3a+1}{2}=\dfrac{3a+5}{4}\)
CMTT, ta có \(\sqrt{3b+1}\le\dfrac{3b+5}{4};\sqrt{3c+1}\le\dfrac{3c+5}{4}\)
Từ đó suy ra \(K\le\dfrac{3\left(a+b+c\right)+15}{4}=6\)
Dấu "=" xảy ra khi a=b=c=1
Vậy...
ta có BĐT \(\sqrt{3a+1}\ge\dfrac{a\left(\sqrt{10}-1\right)}{3}+1\)
\(\Leftrightarrow a\left(3-a\right)\ge0đúng\forall a\)
CMRTT, ta có
\(\sqrt{3b+1}\ge\dfrac{b\left(\sqrt{10}-1\right)}{3}+1\)
\(\sqrt{3c+1}\ge\dfrac{c\left(\sqrt{10}-1\right)}{3}+1\)
Do đó \(K\ge\dfrac{\left(a+b+c\right)\left(\sqrt{10}-1\right)}{3}+3=\sqrt{10}+2\)
Dấu "=" xảy ra khi a=3, b=c=0
Vậy...
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24