Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
Có như : 1001! + 2 ; 1001! + 3 ; 1001! + 4 ; .......... 1001! + 1001
Giải
Có. Gọi A = 2 . 3 . 4 ... . 1001. Các số A + 2, A + 3, ..., A + 1001 là 1000 số tự nhiên liên tiếp và rõ ràng đều là hợp số ( đpcm ).
Một vấn đề được đặt ra : Có những khoảng rất lớn các số tự nhiên liên tiếp đều là hợp số. Vậy có thể đến một lúc nào đó không còn số nguyên tố nữa không ? Có số nguyên tố cuối cùng không ? Từ thế kỉ III trước Công nguyên, nhà toán học cổ Hy Lạp Ơ - clit ( Euclide ) đã chứng minh rằng : Tập hợp các số nguyên tố là vô hạn.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
A=2.3.4....1001 chia hết cho 2... =>hợp số