Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(T=\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\)
\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\right)-\left(\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)
\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}-\dfrac{1}{2^1}-\dfrac{2}{2^2}-...-\dfrac{2021}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
Đặt \(M=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\)
\(\Leftrightarrow2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\)
\(\Leftrightarrow2M-M=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\right)\)
\(\Leftrightarrow M=1-\dfrac{1}{2^{2021}}\)
Khi đó: \(T=1+M-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=1+1-\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)
\(Do\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)>0\) \(nên\) \(suy\) \(ra\) \(T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)< 2\)
Vậy \(T< 2\) (\(ĐPCM\))
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.